Xin Liu, T. Murata, Kyoung-Sook Kim, Chatchawan Kotarasu, Chenyi Zhuang
{"title":"A General View for Network Embedding as Matrix Factorization","authors":"Xin Liu, T. Murata, Kyoung-Sook Kim, Chatchawan Kotarasu, Chenyi Zhuang","doi":"10.1145/3289600.3291029","DOIUrl":null,"url":null,"abstract":"We propose a general view that demonstrates the relationship between network embedding approaches and matrix factorization. Unlike previous works that present the equivalence for the approaches from a skip-gram model perspective, we provide a more fundamental connection from an optimization (objective function) perspective. We demonstrate that matrix factorization is equivalent to optimizing two objectives: one is for bringing together the embeddings of similar nodes; the other is for separating the embeddings of distant nodes. The matrix to be factorized has a general form: S-β. The elements of $\\mathbfS $ indicate pairwise node similarities. They can be based on any user-defined similarity/distance measure or learned from random walks on networks. The shift number β is related to a parameter that balances the two objectives. More importantly, the resulting embeddings are sensitive to β and we can improve the embeddings by tuning β. Experiments show that matrix factorization based on a new proposed similarity measure and β-tuning strategy significantly outperforms existing matrix factorization approaches on a range of benchmark networks.","PeriodicalId":143253,"journal":{"name":"Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3289600.3291029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 48
Abstract
We propose a general view that demonstrates the relationship between network embedding approaches and matrix factorization. Unlike previous works that present the equivalence for the approaches from a skip-gram model perspective, we provide a more fundamental connection from an optimization (objective function) perspective. We demonstrate that matrix factorization is equivalent to optimizing two objectives: one is for bringing together the embeddings of similar nodes; the other is for separating the embeddings of distant nodes. The matrix to be factorized has a general form: S-β. The elements of $\mathbfS $ indicate pairwise node similarities. They can be based on any user-defined similarity/distance measure or learned from random walks on networks. The shift number β is related to a parameter that balances the two objectives. More importantly, the resulting embeddings are sensitive to β and we can improve the embeddings by tuning β. Experiments show that matrix factorization based on a new proposed similarity measure and β-tuning strategy significantly outperforms existing matrix factorization approaches on a range of benchmark networks.