A General View for Network Embedding as Matrix Factorization

Xin Liu, T. Murata, Kyoung-Sook Kim, Chatchawan Kotarasu, Chenyi Zhuang
{"title":"A General View for Network Embedding as Matrix Factorization","authors":"Xin Liu, T. Murata, Kyoung-Sook Kim, Chatchawan Kotarasu, Chenyi Zhuang","doi":"10.1145/3289600.3291029","DOIUrl":null,"url":null,"abstract":"We propose a general view that demonstrates the relationship between network embedding approaches and matrix factorization. Unlike previous works that present the equivalence for the approaches from a skip-gram model perspective, we provide a more fundamental connection from an optimization (objective function) perspective. We demonstrate that matrix factorization is equivalent to optimizing two objectives: one is for bringing together the embeddings of similar nodes; the other is for separating the embeddings of distant nodes. The matrix to be factorized has a general form: S-β. The elements of $\\mathbfS $ indicate pairwise node similarities. They can be based on any user-defined similarity/distance measure or learned from random walks on networks. The shift number β is related to a parameter that balances the two objectives. More importantly, the resulting embeddings are sensitive to β and we can improve the embeddings by tuning β. Experiments show that matrix factorization based on a new proposed similarity measure and β-tuning strategy significantly outperforms existing matrix factorization approaches on a range of benchmark networks.","PeriodicalId":143253,"journal":{"name":"Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3289600.3291029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 48

Abstract

We propose a general view that demonstrates the relationship between network embedding approaches and matrix factorization. Unlike previous works that present the equivalence for the approaches from a skip-gram model perspective, we provide a more fundamental connection from an optimization (objective function) perspective. We demonstrate that matrix factorization is equivalent to optimizing two objectives: one is for bringing together the embeddings of similar nodes; the other is for separating the embeddings of distant nodes. The matrix to be factorized has a general form: S-β. The elements of $\mathbfS $ indicate pairwise node similarities. They can be based on any user-defined similarity/distance measure or learned from random walks on networks. The shift number β is related to a parameter that balances the two objectives. More importantly, the resulting embeddings are sensitive to β and we can improve the embeddings by tuning β. Experiments show that matrix factorization based on a new proposed similarity measure and β-tuning strategy significantly outperforms existing matrix factorization approaches on a range of benchmark networks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
网络嵌入作为矩阵分解的一般观点
我们提出了一个一般的观点来证明网络嵌入方法和矩阵分解之间的关系。不同于以往从跳跃图模型的角度给出等价的方法,我们从优化(目标函数)的角度提供了更基本的联系。我们证明了矩阵分解相当于优化两个目标:一个是将相似节点的嵌入结合在一起;另一种方法用于分离距离节点的嵌入。要分解的矩阵具有一般形式:S-β。$\mathbfS $的元素表示成对节点相似度。它们可以基于任何用户定义的相似性/距离度量,也可以从网络上的随机漫步中学习。移位数β与平衡两个目标的参数有关。更重要的是,所得到的嵌入对β很敏感,我们可以通过调整β来改善嵌入。实验表明,在一系列基准网络上,基于新提出的相似性度量和β调优策略的矩阵分解显著优于现有的矩阵分解方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DAPA: The WSDM 2019 Workshop on Deep Matching in Practical Applications Solving the Sparsity Problem in Recommendations via Cross-Domain Item Embedding Based on Co-Clustering More Than Just Words: Modeling Non-Textual Characteristics of Podcasts Pleasant Route Suggestion based on Color and Object Rates Session details: Session 6: Networks and Social Behavior
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1