{"title":"A novel 7 Gbps low-power CMOS ultra-wideband pulse generator","authors":"M. A. Arafat, A. Rashid","doi":"10.1049/iet-cds.2012.0057","DOIUrl":null,"url":null,"abstract":"In this study, a novel low-power high data rate ultra-wideband (UWB) pulse generator circuit is presented, which can be fully integrated in complementary metal oxide semiconductor (CMOS) process. The basic part of the circuit generates a UWB Gaussian monocycle pulse using the triangular pulse generation technique. A new bipolar phase shift keying pulse modulator is designed to control the polarity of the output pulses. The design includes additional functionality to make the pulse generator also applicable for transmitted reference (TR) signalling system. The circuit can generate pulses at a maximum rate of 7 giga pulse per second (Gpps) without TR pulse (TRP) and 3.5 Gpps with TRP. The generated pulses are symmetrical, each having a width of 142 ps and a peak-to-peak swing of 500 mV. The −3 dB bandwidth of the pulse spectrum is 9 GHz. The pulse generator consumes only 1.13 pJ per pulse from 1.2 V supply. The circuit is designed and simulated in 90 nm CMOS technology.","PeriodicalId":120076,"journal":{"name":"IET Circuits Devices Syst.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Circuits Devices Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/iet-cds.2012.0057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
In this study, a novel low-power high data rate ultra-wideband (UWB) pulse generator circuit is presented, which can be fully integrated in complementary metal oxide semiconductor (CMOS) process. The basic part of the circuit generates a UWB Gaussian monocycle pulse using the triangular pulse generation technique. A new bipolar phase shift keying pulse modulator is designed to control the polarity of the output pulses. The design includes additional functionality to make the pulse generator also applicable for transmitted reference (TR) signalling system. The circuit can generate pulses at a maximum rate of 7 giga pulse per second (Gpps) without TR pulse (TRP) and 3.5 Gpps with TRP. The generated pulses are symmetrical, each having a width of 142 ps and a peak-to-peak swing of 500 mV. The −3 dB bandwidth of the pulse spectrum is 9 GHz. The pulse generator consumes only 1.13 pJ per pulse from 1.2 V supply. The circuit is designed and simulated in 90 nm CMOS technology.