3D Object Tracking in RGB-D Images Using Particle Swarm Optimization

J. G. D. Santos, J. P. Lima
{"title":"3D Object Tracking in RGB-D Images Using Particle Swarm Optimization","authors":"J. G. D. Santos, J. P. Lima","doi":"10.1109/SVR.2017.22","DOIUrl":null,"url":null,"abstract":"Model based tracking techniques allow computing the pose of 3d objects without needing to use markers. In order to perform a precise tracking, these techniques have been using RGB-D sensors together with particle filters for evaluating several pose hypotheses of the object in a given frame from features such as points 3D coordinates, color and normal vector. This work presents a proposal to use of the particle swarm optimization method for allowing 3d object model based tracking. Experiments showed that the proposed method obtained precise results when compared to ground truth values and to state of the art techniques that perform object tracking from RGB-D images.","PeriodicalId":371182,"journal":{"name":"2017 19th Symposium on Virtual and Augmented Reality (SVR)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 19th Symposium on Virtual and Augmented Reality (SVR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SVR.2017.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Model based tracking techniques allow computing the pose of 3d objects without needing to use markers. In order to perform a precise tracking, these techniques have been using RGB-D sensors together with particle filters for evaluating several pose hypotheses of the object in a given frame from features such as points 3D coordinates, color and normal vector. This work presents a proposal to use of the particle swarm optimization method for allowing 3d object model based tracking. Experiments showed that the proposed method obtained precise results when compared to ground truth values and to state of the art techniques that perform object tracking from RGB-D images.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于粒子群优化的RGB-D图像三维目标跟踪
基于模型的跟踪技术允许在不需要使用标记的情况下计算3d对象的姿态。为了进行精确的跟踪,这些技术一直在使用RGB-D传感器和粒子过滤器来评估给定帧中物体的几个姿势假设,如点3D坐标,颜色和法向量。本文提出了一种利用粒子群优化方法实现三维目标模型跟踪的方法。实验表明,与地面真值和从RGB-D图像执行目标跟踪的最新技术相比,所提出的方法获得了精确的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impacts of the inclusion of Virtual Reality in the Jeweler Manufacturing Process Based on the BIM Concept (Building Information Modeling) 3D Object Tracking in RGB-D Images Using Particle Swarm Optimization The Development of a Facial Animation System Based on Performance and the Use of an RGB-D Camera Analyzing AR Viewing Experience through Analytics Heat Maps for Augmented Content Aspects of User Profiles That Can Improve Mobile Augmented Reality Usage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1