{"title":"Simulation, Test and Mitigation of 1/2X Forward Whirl Following Rotor Drop Onto Auxiliary Bearings","authors":"Xiao Kang, A. Palazzolo","doi":"10.1115/gt2019-91645","DOIUrl":null,"url":null,"abstract":"\n 1/2X forward whirl repeatedly occurred after a test rotor spinning at 5,800 rpm was dropped onto ball bearing type auxiliary bearings AB, utilized as a backup for magnetic bearings. The measured contact forces that occurred between the rotor and the auxiliary bearing during the ½X subsynchronous vibration were about thirteen times larger than the static reaction force. The vibration frequency coincided with the rotor-support system natural frequency with the rotor at rest on the auxiliary bearing AB, an occurred at ½ of the rotor spin speed when dropped. The test rig provided measurements of rotor-bearing contact force, rotor orbit (vibrations), and rotational speed during rotor drop events. A simulation model was also developed and demonstrated that parametric excitation in the form of a Mathieu Hill model replicated the measured 1/2X forward whirl vibrations. The simulation model included a nonlinear, elastic-thermal coupled, ball bearing type auxiliary bearing model. The transient model successfully predicted the 1/2X vibration when the rotor was passing 5800RPM as well, and the simulation results quantitatively agreed well with the test results in the frequency domain. Several approaches for mitigating the 1/2X forward whirl were presented such as adding an elastomer O-ring or waviness spring in the AB support system. Measurements confirmed that adding AB dampers effectively mitigated the ½ subsynchronous forward whirl and significantly reduced the contact forces.","PeriodicalId":131756,"journal":{"name":"Volume 7B: Structures and Dynamics","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 7B: Structures and Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/gt2019-91645","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
1/2X forward whirl repeatedly occurred after a test rotor spinning at 5,800 rpm was dropped onto ball bearing type auxiliary bearings AB, utilized as a backup for magnetic bearings. The measured contact forces that occurred between the rotor and the auxiliary bearing during the ½X subsynchronous vibration were about thirteen times larger than the static reaction force. The vibration frequency coincided with the rotor-support system natural frequency with the rotor at rest on the auxiliary bearing AB, an occurred at ½ of the rotor spin speed when dropped. The test rig provided measurements of rotor-bearing contact force, rotor orbit (vibrations), and rotational speed during rotor drop events. A simulation model was also developed and demonstrated that parametric excitation in the form of a Mathieu Hill model replicated the measured 1/2X forward whirl vibrations. The simulation model included a nonlinear, elastic-thermal coupled, ball bearing type auxiliary bearing model. The transient model successfully predicted the 1/2X vibration when the rotor was passing 5800RPM as well, and the simulation results quantitatively agreed well with the test results in the frequency domain. Several approaches for mitigating the 1/2X forward whirl were presented such as adding an elastomer O-ring or waviness spring in the AB support system. Measurements confirmed that adding AB dampers effectively mitigated the ½ subsynchronous forward whirl and significantly reduced the contact forces.