Qiang Gao, Guangrui Wei, Yuehui Ji, Yu Song, Junjie Liu, Ning Han
{"title":"Fast Simultaneous Localization and Mapping Algorithm with Point and Line Feature Based on Image Entropy","authors":"Qiang Gao, Guangrui Wei, Yuehui Ji, Yu Song, Junjie Liu, Ning Han","doi":"10.1109/ICMA54519.2022.9856289","DOIUrl":null,"url":null,"abstract":"To address the problem of feature information redundancy caused by visual simultaneous localization and mapping algorithm with point and line features in high-texture environment, a fast simultaneous localization and mapping algorithm with point and line feature based on image entropy is proposed. In this paper, we first propose a new feature extraction strategy, which determines the parameters of the feature extractor by image entropy; then, the idea of weighting is introduced in pose estimation, and the point and line features are weighted by the image entropy; finally, we test our method using the KITTI and EuRoC dataset, and demonstrate that our method improves the real-time performance of the system while ensuring the accuracy and robustness of the system.","PeriodicalId":120073,"journal":{"name":"2022 IEEE International Conference on Mechatronics and Automation (ICMA)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Mechatronics and Automation (ICMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMA54519.2022.9856289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
To address the problem of feature information redundancy caused by visual simultaneous localization and mapping algorithm with point and line features in high-texture environment, a fast simultaneous localization and mapping algorithm with point and line feature based on image entropy is proposed. In this paper, we first propose a new feature extraction strategy, which determines the parameters of the feature extractor by image entropy; then, the idea of weighting is introduced in pose estimation, and the point and line features are weighted by the image entropy; finally, we test our method using the KITTI and EuRoC dataset, and demonstrate that our method improves the real-time performance of the system while ensuring the accuracy and robustness of the system.