SC-DGCN: Sentiment Classification Based on Densely Connected Graph Convolutional Network

Renhao Zhao, Menghan Wang, Qiong Yin, Chao Chen
{"title":"SC-DGCN: Sentiment Classification Based on Densely Connected Graph Convolutional Network","authors":"Renhao Zhao, Menghan Wang, Qiong Yin, Chao Chen","doi":"10.1145/3457682.3457724","DOIUrl":null,"url":null,"abstract":"Recently, various neural network frameworks have achieved good results in sentiment classification task, such as Recurrent Neural Networks (RNN) and Convolutional Neural Networks (CNN). However, these methods only take into account semantic information in local contexts and ignore the global syntactic structure information due to the network structure. To solve this problem, we propose a novel neural architecture called SC-DGCN that combines Graph Convolutional Network (GCN) and Bi-LSTM. In SC-DGCN model, we utilize a GCN over the dependency tree of a sentence to exploit syntactical information and words dependencies. In addition, we further introduce dense connection strategy into GCN blocks to aggregate more syntactic information from neighbors and multi-hops in the dependency tree, and employ attention mechanism to generate the final representation of text. Our proposed SC-DGCN model can automatically extract semantic feature in local contexts and the global syntactic structure feature. A series of experiments on MR and SST datasets also indicate that our model is effective for sentiment classification task.","PeriodicalId":142045,"journal":{"name":"2021 13th International Conference on Machine Learning and Computing","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 13th International Conference on Machine Learning and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3457682.3457724","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Recently, various neural network frameworks have achieved good results in sentiment classification task, such as Recurrent Neural Networks (RNN) and Convolutional Neural Networks (CNN). However, these methods only take into account semantic information in local contexts and ignore the global syntactic structure information due to the network structure. To solve this problem, we propose a novel neural architecture called SC-DGCN that combines Graph Convolutional Network (GCN) and Bi-LSTM. In SC-DGCN model, we utilize a GCN over the dependency tree of a sentence to exploit syntactical information and words dependencies. In addition, we further introduce dense connection strategy into GCN blocks to aggregate more syntactic information from neighbors and multi-hops in the dependency tree, and employ attention mechanism to generate the final representation of text. Our proposed SC-DGCN model can automatically extract semantic feature in local contexts and the global syntactic structure feature. A series of experiments on MR and SST datasets also indicate that our model is effective for sentiment classification task.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SC-DGCN:基于密集连通图卷积网络的情感分类
近年来,各种神经网络框架在情感分类任务中都取得了很好的效果,如递归神经网络(RNN)和卷积神经网络(CNN)。然而,由于网络结构的原因,这些方法只考虑了局部上下文的语义信息,而忽略了全局的句法结构信息。为了解决这个问题,我们提出了一种新的神经网络架构SC-DGCN,它结合了图卷积网络(GCN)和Bi-LSTM。在SC-DGCN模型中,我们利用句子依赖树上的GCN来挖掘句法信息和单词依赖关系。此外,我们进一步在GCN块中引入密集连接策略,从依赖树的邻居和多跳中聚合更多的语法信息,并采用注意机制生成文本的最终表示。我们提出的SC-DGCN模型可以自动提取局部上下文的语义特征和全局语法结构特征。在MR和SST数据集上的一系列实验也表明,我们的模型对情感分类任务是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Corpus Construction and Entity Recognition for the Field of Industrial Robot Fault Diagnosis GCN2-NAA: Two-stage Graph Convolutional Networks with Node-Aware Attention for Joint Entity and Relation Extraction A Practical Indoor and Outdoor Seamless Navigation System Based on Electronic Map and Geomagnetism SC-DGCN: Sentiment Classification Based on Densely Connected Graph Convolutional Network Bird Songs Recognition Based on Ensemble Extreme Learning Machine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1