Automatic extraction of positive cells in pathology images of meningioma based on the maximal entropy principle and HSV color space

V. Anari, P. Mahzouni, R. Amirfattahi
{"title":"Automatic extraction of positive cells in pathology images of meningioma based on the maximal entropy principle and HSV color space","authors":"V. Anari, P. Mahzouni, R. Amirfattahi","doi":"10.1109/IRANIANMVIP.2010.5941150","DOIUrl":null,"url":null,"abstract":"This paper describes a computer-aided system for analyzing immunohistochemically stained meningioma cancer cell images. Accurate segmentation of cells in such images plays a critical role in diagnosing diffrent type of meningioma cancer. The methodpresented to automatically extract the positive cells in meninigioma tumor immunohistochemical pathology images based on HSV color space. First, according to distribution rules of positive cells in the HSV color space, it uses the component H, S and V as threshold conditions and leverages the maximal entropy principle to build a model to segment and extract positive cells. Experimental results shows that proposed algorithm can be used by pathologist to detection reliable quantitatively analyze the parameter of tumor cells and over come to disadvantages of the traditional approach.","PeriodicalId":350778,"journal":{"name":"2010 6th Iranian Conference on Machine Vision and Image Processing","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 6th Iranian Conference on Machine Vision and Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRANIANMVIP.2010.5941150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper describes a computer-aided system for analyzing immunohistochemically stained meningioma cancer cell images. Accurate segmentation of cells in such images plays a critical role in diagnosing diffrent type of meningioma cancer. The methodpresented to automatically extract the positive cells in meninigioma tumor immunohistochemical pathology images based on HSV color space. First, according to distribution rules of positive cells in the HSV color space, it uses the component H, S and V as threshold conditions and leverages the maximal entropy principle to build a model to segment and extract positive cells. Experimental results shows that proposed algorithm can be used by pathologist to detection reliable quantitatively analyze the parameter of tumor cells and over come to disadvantages of the traditional approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于最大熵原理和HSV色彩空间的脑膜瘤病理图像阳性细胞自动提取
本文描述了一种用于分析免疫组织化学染色脑膜瘤癌细胞图像的计算机辅助系统。影像中细胞的准确分割对不同类型脑膜瘤癌的诊断具有重要作用。提出了一种基于HSV颜色空间的脑膜瘤免疫组化病理图像阳性细胞自动提取方法。首先,根据阳性细胞在HSV色彩空间中的分布规律,以H、S、V分量为阈值条件,利用最大熵原理建立模型,对阳性细胞进行分割和提取;实验结果表明,该算法可用于病理学家对肿瘤细胞参数进行可靠的定量检测,克服了传统方法的不足。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Lung nodule segmentation using active contour modeling A new cumulant-based active contour model with wavelet energy for segmentation of SAR images Human action recognition by RANSAC based salient features of skeleton history image using ANFIS Automatic extraction of positive cells in pathology images of meningioma based on the maximal entropy principle and HSV color space Multiple description video coding based on Lagrangian rate allocation and JPEG2000
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1