Improved Data-Aware Task Dispatching for Batch Queuing Systems

Xieming Li, O. Tatebe
{"title":"Improved Data-Aware Task Dispatching for Batch Queuing Systems","authors":"Xieming Li, O. Tatebe","doi":"10.1109/DATACLOUD.2016.9","DOIUrl":null,"url":null,"abstract":"This paper describes a data-aware task dispatching strategy called Improved Data-Aware Task Dispatching (IDAD). This approach exploits the high-performance of local file access in non-uniform storage-access (NUSA) file systems and is based on our previous work, Data-Aware Dispatch (DAD). In IDAD, the method of calculating data placement is revised, and the CPU factor is removed, as it has no major impact on performance but significantly reduces the difficulty for tweaking parameter.We evaluated our approach in comparison with DAD and the stock FIFO Torque scheduler using BLAST benchmarks. We observed makespan reductions of 10.40% and 35.05% compared with DAD and stock FIFO schedulers, respectively.","PeriodicalId":325593,"journal":{"name":"2016 Seventh International Workshop on Data-Intensive Computing in the Clouds (DataCloud)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Seventh International Workshop on Data-Intensive Computing in the Clouds (DataCloud)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DATACLOUD.2016.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper describes a data-aware task dispatching strategy called Improved Data-Aware Task Dispatching (IDAD). This approach exploits the high-performance of local file access in non-uniform storage-access (NUSA) file systems and is based on our previous work, Data-Aware Dispatch (DAD). In IDAD, the method of calculating data placement is revised, and the CPU factor is removed, as it has no major impact on performance but significantly reduces the difficulty for tweaking parameter.We evaluated our approach in comparison with DAD and the stock FIFO Torque scheduler using BLAST benchmarks. We observed makespan reductions of 10.40% and 35.05% compared with DAD and stock FIFO schedulers, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
批队列系统的改进数据感知任务调度
本文描述了一种数据感知任务调度策略,称为改进的数据感知任务调度(IDAD)。这种方法利用了非统一存储访问(NUSA)文件系统中本地文件访问的高性能,并基于我们以前的工作——数据感知调度(Data-Aware Dispatch, DAD)。在IDAD中,修改了计算数据位置的方法,并删除了CPU因素,因为它对性能没有重大影响,但大大降低了调整参数的难度。我们使用BLAST基准测试,将我们的方法与DAD和现有的FIFO扭矩调度器进行了比较。我们观察到,与DAD和库存FIFO调度程序相比,最大完工时间分别减少了10.40%和35.05%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improved Data-Aware Task Dispatching for Batch Queuing Systems A Multi-tenant Fair Share Approach to Full-text Search Engine An Efficient Parallel Implementation of a Light-weight Data Privacy Method for Mobile Cloud Users Asterism: Pegasus and Dispel4py Hybrid Workflows for Data-Intensive Science Data-Intensive Supercomputing in the Cloud: Global Analytics for Satellite Imagery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1