Dynamical digital silicon neurons

A. Cassidy, A. Andreou
{"title":"Dynamical digital silicon neurons","authors":"A. Cassidy, A. Andreou","doi":"10.1109/BIOCAS.2008.4696931","DOIUrl":null,"url":null,"abstract":"We present an array of dynamical digital silicon neurons implementing the Izhikevich neuron model. The FPGA based array consists of 32 physical neurons, each time multiplexing the state of 8 virtual neurons, for a total of 256 independent neurons. The neural array operates at 5,000 times faster than real time, performing over 20.48 GOPS (giga operations per second). It is intended for neural simulation acceleration, neural prostheses, and neuromorphic systems.","PeriodicalId":415200,"journal":{"name":"2008 IEEE Biomedical Circuits and Systems Conference","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"68","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Biomedical Circuits and Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOCAS.2008.4696931","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 68

Abstract

We present an array of dynamical digital silicon neurons implementing the Izhikevich neuron model. The FPGA based array consists of 32 physical neurons, each time multiplexing the state of 8 virtual neurons, for a total of 256 independent neurons. The neural array operates at 5,000 times faster than real time, performing over 20.48 GOPS (giga operations per second). It is intended for neural simulation acceleration, neural prostheses, and neuromorphic systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
动态数字硅神经元
我们提出了一组动态数字硅神经元,实现了Izhikevich神经元模型。基于FPGA的阵列由32个物理神经元组成,每次复用8个虚拟神经元的状态,总共256个独立神经元。神经阵列的运行速度比实时快5000倍,执行超过20.48 GOPS(每秒千兆操作)。它适用于神经模拟加速、神经假体和神经形态系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A wireless neural interface for chronic recording Development of novel SAW devices in CMOS technology for biosensor applications An efficient wireless power link for high voltage retinal implant FPGA implementation of 4-channel ICA for on-line EEG signal separation Pressure detection and wireless interface for patient bed
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1