Partial Flattening: A Compilation Technique for Irregular Nested Parallelism on GPGPUs

Ming-Hsiang Huang, Wuu Yang
{"title":"Partial Flattening: A Compilation Technique for Irregular Nested Parallelism on GPGPUs","authors":"Ming-Hsiang Huang, Wuu Yang","doi":"10.1109/ICPP.2016.70","DOIUrl":null,"url":null,"abstract":"Supporting irregular nested parallelism on modern GPUs requires much effort. One should distribute the parallel tasks evenly while preserving reasonable memory usage. Moreover, the task distribution should also fit the thread hierarchy of the underlying GPU to fully exploit its computing power. We propose partial flattening, an automatic code transformation which translates annotated C programs to CUDA kernels. Thread blocks are treated as flat SIMT processors. Iterations are dynamically organized into batches. Batches are executed in a sequential (depth-first) order. A kernel is treated as multiple independent SIMT processors with an additional task-stealing mechanism. Partial flattening allows easy expression of nested parallelism and synchronization by annotating nested parallel loops or parallel-recursive calls, while preserving reasonable memory usage by the depth-first execution order. Our 2-level task distribution scheme does not need special hardware support, and fits well with the CUDA thread hierarchy. Experiments show that partial flattening outperforms NESL significantly in most benchmarks, and obtains 2.15x and 67x speedup over CUDA dynamic parallelism in Quicksort and the Bron-Kerbosch algorithm, respectively.","PeriodicalId":409991,"journal":{"name":"2016 45th International Conference on Parallel Processing (ICPP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 45th International Conference on Parallel Processing (ICPP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPP.2016.70","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Supporting irregular nested parallelism on modern GPUs requires much effort. One should distribute the parallel tasks evenly while preserving reasonable memory usage. Moreover, the task distribution should also fit the thread hierarchy of the underlying GPU to fully exploit its computing power. We propose partial flattening, an automatic code transformation which translates annotated C programs to CUDA kernels. Thread blocks are treated as flat SIMT processors. Iterations are dynamically organized into batches. Batches are executed in a sequential (depth-first) order. A kernel is treated as multiple independent SIMT processors with an additional task-stealing mechanism. Partial flattening allows easy expression of nested parallelism and synchronization by annotating nested parallel loops or parallel-recursive calls, while preserving reasonable memory usage by the depth-first execution order. Our 2-level task distribution scheme does not need special hardware support, and fits well with the CUDA thread hierarchy. Experiments show that partial flattening outperforms NESL significantly in most benchmarks, and obtains 2.15x and 67x speedup over CUDA dynamic parallelism in Quicksort and the Bron-Kerbosch algorithm, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
部分平坦化:gpgpu上不规则嵌套并行的编译技术
在现代gpu上支持不规则嵌套并行需要付出很多努力。应该均匀地分配并行任务,同时保持合理的内存使用。此外,任务分配还应符合底层GPU的线程层次结构,以充分利用其计算能力。我们提出部分扁平化,这是一种自动代码转换,可以将带注释的C程序转换为CUDA内核。线程块被视为平面SIMT处理器。迭代被动态地组织成批。批处理按顺序(深度优先)执行。内核被视为多个独立的SIMT处理器,具有额外的任务窃取机制。部分扁平化允许通过注释嵌套并行循环或并行递归调用来轻松表达嵌套并行性和同步性,同时通过深度优先的执行顺序保留合理的内存使用。我们的2级任务分配方案不需要特殊的硬件支持,并且非常适合CUDA线程层次结构。实验表明,在大多数基准测试中,部分平坦化算法明显优于NESL算法,在Quicksort和brown - kerbosch算法中分别比CUDA动态并行化算法获得2.15倍和67倍的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Parallel k-Means++ for Multiple Shared-Memory Architectures RCHC: A Holistic Runtime System for Concurrent Heterogeneous Computing Partial Flattening: A Compilation Technique for Irregular Nested Parallelism on GPGPUs Improving RAID Performance Using an Endurable SSD Cache PARVMEC: An Efficient, Scalable Implementation of the Variational Moments Equilibrium Code
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1