Parallel Smoothed Aggregation Multigrid : Aggregation Strategies on Massively Parallel Machines

R. Tuminaro, C. Tong
{"title":"Parallel Smoothed Aggregation Multigrid : Aggregation Strategies on Massively Parallel Machines","authors":"R. Tuminaro, C. Tong","doi":"10.1109/SC.2000.10008","DOIUrl":null,"url":null,"abstract":"Algebraic multigrid methods offer the hope that multigrid convergence can be achieve (for at least some important applications) without a great deal of effort from engineers an scientists wishing to solve linear systems. In this paper we consider parallelization of the smoothe aggregation multigrid methods. Smoothed aggregation is one of the most promising algebraic multigrid methods. Therefore, eveloping parallel variants with both good convergence an efficiency properties is of great importance. However, parallelization is nontrivial due to the somewhat sequential aggregation (or grid coarsening) phase. In this paper, we discuss three different parallel aggregation algorithms an illustrate the advantages an disadvantages of each variant in terms of parallelism an convergence. Numerical results will be shown on the Intel Teraflop computer for some large problems coming from nontrivial codes: quasi-static electric potential simulation an a fluid flow calculation.","PeriodicalId":228250,"journal":{"name":"ACM/IEEE SC 2000 Conference (SC'00)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"121","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM/IEEE SC 2000 Conference (SC'00)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SC.2000.10008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 121

Abstract

Algebraic multigrid methods offer the hope that multigrid convergence can be achieve (for at least some important applications) without a great deal of effort from engineers an scientists wishing to solve linear systems. In this paper we consider parallelization of the smoothe aggregation multigrid methods. Smoothed aggregation is one of the most promising algebraic multigrid methods. Therefore, eveloping parallel variants with both good convergence an efficiency properties is of great importance. However, parallelization is nontrivial due to the somewhat sequential aggregation (or grid coarsening) phase. In this paper, we discuss three different parallel aggregation algorithms an illustrate the advantages an disadvantages of each variant in terms of parallelism an convergence. Numerical results will be shown on the Intel Teraflop computer for some large problems coming from nontrivial codes: quasi-static electric potential simulation an a fluid flow calculation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
并行平滑聚合多网格:大规模并行机器上的聚合策略
代数多重网格方法提供了一种希望,即无需工程师和科学家解决线性系统的大量工作,就可以实现多网格收敛(至少在某些重要应用中)。本文考虑了光滑聚合多网格方法的并行化问题。平滑聚合是目前最有前途的代数多重网格方法之一。因此,开发具有良好收敛性和效率的并行变异体是非常重要的。然而,由于有些顺序的聚合(或网格粗化)阶段,并行化是不平凡的。在本文中,我们讨论了三种不同的并行聚合算法,并从并行性和收敛性方面说明了每种算法的优缺点。将在Intel Teraflop计算机上显示一些来自非平凡代码的大问题的数值结果:准静态电位模拟和流体流动计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Object-Oriented Job Execution Environment Automatically Tuned Collective Communications Architectural and Performance Evaluation of GigaNet and Myrinet Interconnects on Clusters of Small-Scale SMP Servers Parallel Smoothed Aggregation Multigrid : Aggregation Strategies on Massively Parallel Machines High-Cost CFD on a Low-Cost Cluster
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1