A. Eid, J. A. Winkelmann, G. Spicer, L. Almassalha, V. Backman
{"title":"Spectral based tissue classification and ultrastructural characterization using ISOCT (Conference Presentation)","authors":"A. Eid, J. A. Winkelmann, G. Spicer, L. Almassalha, V. Backman","doi":"10.1117/12.2513825","DOIUrl":null,"url":null,"abstract":"Alterations to nanoscale structures, lymphatics, and microvasculature are early hallmarks of neoplasia as well as a variety of other diseases. Unfortunately, nanoscale alterations and microvasculature function, such as oxygen saturation, cannot be probed by histology. Furthermore, properly evaluating lymphatic and microvasculature organization can be challenging with histological slices. Optical Coherence Tomography (OCT) offers a promising noninvasive solution to evaluating these biomarkers in 3D in vivo. \n\nOCT has shown the ability to provide 3D maps of vasculature with flow rate and blood oxygenation, as well as, lymphatic organization with a resolution on the order of 1-10 microns. Our group has established Inverse Spectroscopic OCT (ISOCT), which measures nanoscale mass density tissue fluctuations and can distinguish between histologically normal cancerous and noncancerous tissue. However, the most influential underlying assumption that allows the distinction between subdiffractional structural alterations in tissue is that the region of interest (ROI) includes a homogenous tissue type with similar scattering and absorption properties. Therefore, the highly absorbing blood and low scattering lymphatics must be excluded from analysis. \n\nTraditional OCT techniques to isolate vasculature and its spectra require timely repetitive scanning protocols, and the commonly utilized near infrared operating bandwidths require vessel-like filters to locate lymphatics. Herein we show how vasculature location and spectra can be extracted with a single visible OCT scan. Additionally, we demonstrate the high image contrast from visible OCT allows lymphatic location to be well defined. Finally, we show ultrastructural metrics fall within physiologically reasonable ranges after excluding vasculature and lymphatics from the ROI.","PeriodicalId":373171,"journal":{"name":"Biophysics, Biology and Biophotonics IV: the Crossroads","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysics, Biology and Biophotonics IV: the Crossroads","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2513825","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Alterations to nanoscale structures, lymphatics, and microvasculature are early hallmarks of neoplasia as well as a variety of other diseases. Unfortunately, nanoscale alterations and microvasculature function, such as oxygen saturation, cannot be probed by histology. Furthermore, properly evaluating lymphatic and microvasculature organization can be challenging with histological slices. Optical Coherence Tomography (OCT) offers a promising noninvasive solution to evaluating these biomarkers in 3D in vivo.
OCT has shown the ability to provide 3D maps of vasculature with flow rate and blood oxygenation, as well as, lymphatic organization with a resolution on the order of 1-10 microns. Our group has established Inverse Spectroscopic OCT (ISOCT), which measures nanoscale mass density tissue fluctuations and can distinguish between histologically normal cancerous and noncancerous tissue. However, the most influential underlying assumption that allows the distinction between subdiffractional structural alterations in tissue is that the region of interest (ROI) includes a homogenous tissue type with similar scattering and absorption properties. Therefore, the highly absorbing blood and low scattering lymphatics must be excluded from analysis.
Traditional OCT techniques to isolate vasculature and its spectra require timely repetitive scanning protocols, and the commonly utilized near infrared operating bandwidths require vessel-like filters to locate lymphatics. Herein we show how vasculature location and spectra can be extracted with a single visible OCT scan. Additionally, we demonstrate the high image contrast from visible OCT allows lymphatic location to be well defined. Finally, we show ultrastructural metrics fall within physiologically reasonable ranges after excluding vasculature and lymphatics from the ROI.