An Enhanced 3-Tier Multimodal Biometric Authentication

Aman Kathed, S. Azam, Bharanidharan Shanmugam, Asif Karim, Kheng Cher Yeo, Friso De Boer, M. Jonkman
{"title":"An Enhanced 3-Tier Multimodal Biometric Authentication","authors":"Aman Kathed, S. Azam, Bharanidharan Shanmugam, Asif Karim, Kheng Cher Yeo, Friso De Boer, M. Jonkman","doi":"10.1109/ICCCI.2019.8822117","DOIUrl":null,"url":null,"abstract":"In today’s networked world the requirement for security frameworks are becoming tighter because of an increase in violations like PC hacking, unlawful access of ATM, cellphone and security ruptures in government agencies, and what’s more, private structures. Lawbreakers exploit basic imperfections in the traditional security frameworks. For these security issues, biometric acknowledgment framework is utilized for identifying individuals using distinguishable and exclusive proof. Biometrics of an individual can’ be hacked effortlessly as opposed to a password. A multimodal framework can consolidate any number of free biometrics and make any biometric system a lot stronger than using only one biometric as user’s confirmation device. The combination of numerous biometrics reduces the framework mistake rate as well. Combination strategies incorporate a strategy of converging biometric modalities consecutively until the point that an adequate match is reached. This paper proposes a block diagram of multimodal biometrics; likewise, discusses the utilization of biometric frameworks and their leeway over the unimodal biometric framework and how a combination of different biometrics can substantially decrease the framework’s error rate","PeriodicalId":302941,"journal":{"name":"2019 International Conference on Computer Communication and Informatics (ICCCI)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Computer Communication and Informatics (ICCCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCI.2019.8822117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

In today’s networked world the requirement for security frameworks are becoming tighter because of an increase in violations like PC hacking, unlawful access of ATM, cellphone and security ruptures in government agencies, and what’s more, private structures. Lawbreakers exploit basic imperfections in the traditional security frameworks. For these security issues, biometric acknowledgment framework is utilized for identifying individuals using distinguishable and exclusive proof. Biometrics of an individual can’ be hacked effortlessly as opposed to a password. A multimodal framework can consolidate any number of free biometrics and make any biometric system a lot stronger than using only one biometric as user’s confirmation device. The combination of numerous biometrics reduces the framework mistake rate as well. Combination strategies incorporate a strategy of converging biometric modalities consecutively until the point that an adequate match is reached. This paper proposes a block diagram of multimodal biometrics; likewise, discusses the utilization of biometric frameworks and their leeway over the unimodal biometric framework and how a combination of different biometrics can substantially decrease the framework’s error rate
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
增强的3层多模态生物识别认证
在今天的网络世界中,对安全框架的要求越来越严格,因为越来越多的违规行为,如个人电脑黑客攻击,非法访问ATM机,手机和政府机构的安全破裂,更重要的是,私人结构。不法分子利用了传统安全框架的基本缺陷。针对这些安全问题,生物识别识别框架被用于使用可区分的和排他性的证据来识别个人。与密码不同,个人的生物识别信息不容易被黑客入侵。多模式框架可以整合任意数量的免费生物识别技术,并使任何生物识别系统比仅使用一种生物识别技术作为用户确认设备要强大得多。多种生物特征的结合也降低了框架错误率。组合策略包括连续聚合生物识别模式的策略,直到达到充分匹配的点。本文提出了一种多模态生物识别的框图;同样地,讨论了生物识别框架的利用及其在单峰生物识别框架上的余地,以及不同生物识别技术的组合如何能够大大降低框架的错误率
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimized Charge Scheduling of Plug-In Electric Vehicles using Modified Placement Algorithm Design and Analysis of Ring Oscillator Influenced Beat Frequency Detection for True Random Number Generation on FPGA Classification of Non-focal and Focal EEG signals using Local Binary Pattern Feature Extraction and Classification Techniques for the Detection of Lung Cancer: A Detailed Survey An Enhanced 3-Tier Multimodal Biometric Authentication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1