Multi-Objective Design Optimization of Rolling Element Bearings Using ABC, AIA and PSO Technique

V. Savsani
{"title":"Multi-Objective Design Optimization of Rolling Element Bearings Using ABC, AIA and PSO Technique","authors":"V. Savsani","doi":"10.4018/ijeoe.2013070107","DOIUrl":null,"url":null,"abstract":"Rolling element bearings are widely used as important components in most of the mechanical engineering applications. These bearings find wide applications in automotive, manufacturing and aeronautical industries. The problem associated with rolling element bearings are that the design and selection are based on different operating conditions to reach their excellent performance, long life and high reliability. This leads to the requirement of optimal design of rolling element bearings. Optimization aspects of a rolling element bearing are presented in this paper considering three different objectives namely, dynamic capacity, static capacity and elastohydrodynamic minimum film thickness. The design parameters include mean diameter of rolling, ball diameter, number of balls, and inner and outer race groove curvature radii. Different constants associated with the constraints are given some ranges and are included as design variables. The optimization procedure is carried out using artificial bee colony (ABC) optimization technique, artificial immune algorithm (AIA), and particle swarm optimization (PSO) technique. Both single and multi-objective optimization aspects are considered. The results of the considered techniques are compared with the previously published results. The considered techniques have given much better results in comparison to the previously tried approaches.","PeriodicalId":246250,"journal":{"name":"Int. J. Energy Optim. Eng.","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Energy Optim. Eng.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijeoe.2013070107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Rolling element bearings are widely used as important components in most of the mechanical engineering applications. These bearings find wide applications in automotive, manufacturing and aeronautical industries. The problem associated with rolling element bearings are that the design and selection are based on different operating conditions to reach their excellent performance, long life and high reliability. This leads to the requirement of optimal design of rolling element bearings. Optimization aspects of a rolling element bearing are presented in this paper considering three different objectives namely, dynamic capacity, static capacity and elastohydrodynamic minimum film thickness. The design parameters include mean diameter of rolling, ball diameter, number of balls, and inner and outer race groove curvature radii. Different constants associated with the constraints are given some ranges and are included as design variables. The optimization procedure is carried out using artificial bee colony (ABC) optimization technique, artificial immune algorithm (AIA), and particle swarm optimization (PSO) technique. Both single and multi-objective optimization aspects are considered. The results of the considered techniques are compared with the previously published results. The considered techniques have given much better results in comparison to the previously tried approaches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于ABC、AIA和PSO技术的滚动轴承多目标优化设计
滚动轴承作为重要部件在大多数机械工程应用中被广泛使用。这些轴承广泛应用于汽车,制造业和航空工业。与滚动轴承相关的问题是,设计和选择是基于不同的运行条件,以达到其优异的性能,长寿命和高可靠性。这就提出了对滚动轴承进行优化设计的要求。本文提出了滚动轴承的优化方面考虑三个不同的目标,即动态能力,静态能力和弹流动力最小膜厚度。设计参数包括轧制平均直径、球直径、球数和内外滚道曲率半径。与约束相关联的不同常数被赋予一定的范围,并作为设计变量包含在内。优化过程采用人工蜂群(ABC)优化技术、人工免疫算法(AIA)和粒子群优化(PSO)技术。考虑了单目标优化和多目标优化两个方面。所考虑的技术的结果与先前发表的结果进行了比较。与以前尝试过的方法相比,所考虑的技术提供了更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal Site Selection for Solar Photovoltaic Power Plant in North Eastern State of India using Hybrid MCDM Tools Security Constrained Optimal Reactive Power Dispatch Using Hybrid Particle Swarm Optimization and Differential Evolution Visible Light Communication System for Indoor Positioning Using Solar Cell as Receiver A New Central Control Scheme for Future Micro-Grid Systems Considering Variable Speed Drive Systems and Fuzzy Logic Control System Comparative Study of Two Different Converters with its Controller for Grid Connected WECS with PMSG
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1