P. D. S. Magalhães, Otávio Alcântara le Lime, J. Silveira
{"title":"PHICC: An Error Correction Code For Memory Devices","authors":"P. D. S. Magalhães, Otávio Alcântara le Lime, J. Silveira","doi":"10.1145/3338852.3339834","DOIUrl":null,"url":null,"abstract":"With the evolution of technology in the microelectronics field, integrated circuits (ICs) have been developed with decreasing dimensions. Despite the advances provided by the scale reduction, the occurrence of Multiple Cell Upsets (MCUs) caused by interferences such as ionizing radiation, has become increasingly common. Error Correction Codes (ECCs) are capable of augmenting fault tolerance of computer systems, however, there must be balance between error correction effectiveness and silicon implementation costs. The purpose of this article is to present the Parity Hamming Interleaved Correction Code (PHICC), which consists of a code capable of correcting multiple transient errors in memory cells, with low implementation cost. The validation of the PHICC was performed through a comparative analysis of correction effectiveness, implementation costs, reliability and Mean Time to Failure (MTTF) with others ECCs. The results show that PHICC can maintain the reliability system for longer time, which makes it a strong candidate for use in critical applications.","PeriodicalId":184401,"journal":{"name":"2019 32nd Symposium on Integrated Circuits and Systems Design (SBCCI)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 32nd Symposium on Integrated Circuits and Systems Design (SBCCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3338852.3339834","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
With the evolution of technology in the microelectronics field, integrated circuits (ICs) have been developed with decreasing dimensions. Despite the advances provided by the scale reduction, the occurrence of Multiple Cell Upsets (MCUs) caused by interferences such as ionizing radiation, has become increasingly common. Error Correction Codes (ECCs) are capable of augmenting fault tolerance of computer systems, however, there must be balance between error correction effectiveness and silicon implementation costs. The purpose of this article is to present the Parity Hamming Interleaved Correction Code (PHICC), which consists of a code capable of correcting multiple transient errors in memory cells, with low implementation cost. The validation of the PHICC was performed through a comparative analysis of correction effectiveness, implementation costs, reliability and Mean Time to Failure (MTTF) with others ECCs. The results show that PHICC can maintain the reliability system for longer time, which makes it a strong candidate for use in critical applications.