T. O’Connor, B. Javidi, A. Markman, A. Anand, B. Andemariam
{"title":"Overview of automated sickle cell disease diagnosis by analysis of spatio-temporal cell dynamics in digital holographic microscopy","authors":"T. O’Connor, B. Javidi, A. Markman, A. Anand, B. Andemariam","doi":"10.1117/12.2521150","DOIUrl":null,"url":null,"abstract":"We overview a previously reported system for automated diagnosis of sickle cell disease based on red blood cell (RBC) membrane fluctuations measured via digital holographic microscopy. A low-cost, compact, 3D-printed shearing interferometer is used to record video holograms of RBCs. Each hologram frame is reconstructed in order to form a spatio-temporal data cube from which features regarding membrane fluctuations are extracted. The motility-based features are combined with static morphology-based cell features and inputted into a random forest classifier which outputs the disease state of the cell with high accuracy.","PeriodicalId":350781,"journal":{"name":"Three-Dimensional Imaging, Visualization, and Display 2019","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Three-Dimensional Imaging, Visualization, and Display 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2521150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We overview a previously reported system for automated diagnosis of sickle cell disease based on red blood cell (RBC) membrane fluctuations measured via digital holographic microscopy. A low-cost, compact, 3D-printed shearing interferometer is used to record video holograms of RBCs. Each hologram frame is reconstructed in order to form a spatio-temporal data cube from which features regarding membrane fluctuations are extracted. The motility-based features are combined with static morphology-based cell features and inputted into a random forest classifier which outputs the disease state of the cell with high accuracy.