Learning Free Line Detection in Manuscripts using Distance Transform Graph

M. Kassis, Jihad El-Sana
{"title":"Learning Free Line Detection in Manuscripts using Distance Transform Graph","authors":"M. Kassis, Jihad El-Sana","doi":"10.1109/ICDAR.2019.00044","DOIUrl":null,"url":null,"abstract":"We present a fully automated learning free method, for line detection in manuscripts. We begin by separating components that span over multiple lines, then we remove noise, and small connected components such as diacritics. We apply a distance transform on the image to create the image skeleton. The skeleton is pruned, its vertexes and edges are detected, in order to generate the initial document graph. We calculate the vertex v-score using its t-score and l-score quantifying its distance from being an absolute link in a line. In a greedy manner we classify each edge in the graph either a link, a bridge or a conflict edge. We merge every two edges classified as link together, then we merge the conflict edges next. Finally we remove the bridge edges from the graph generating the final form of the graph. Each edge in the graph equals to one extracted line. We applied the method on the DIVA-hisDB dataset on both public and private sections. The public section participated in the recently conducted Layout Analysis for Challenging Medieval Manuscripts Competition, and we have achieved results surpassing the vast majority of these systems.","PeriodicalId":325437,"journal":{"name":"2019 International Conference on Document Analysis and Recognition (ICDAR)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Document Analysis and Recognition (ICDAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2019.00044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We present a fully automated learning free method, for line detection in manuscripts. We begin by separating components that span over multiple lines, then we remove noise, and small connected components such as diacritics. We apply a distance transform on the image to create the image skeleton. The skeleton is pruned, its vertexes and edges are detected, in order to generate the initial document graph. We calculate the vertex v-score using its t-score and l-score quantifying its distance from being an absolute link in a line. In a greedy manner we classify each edge in the graph either a link, a bridge or a conflict edge. We merge every two edges classified as link together, then we merge the conflict edges next. Finally we remove the bridge edges from the graph generating the final form of the graph. Each edge in the graph equals to one extracted line. We applied the method on the DIVA-hisDB dataset on both public and private sections. The public section participated in the recently conducted Layout Analysis for Challenging Medieval Manuscripts Competition, and we have achieved results surpassing the vast majority of these systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用距离变换图学习手稿中的自由线检测
我们提出了一种完全自动化的免费学习方法,用于手稿中的线条检测。我们首先分离跨多条线的组件,然后去除噪声和小的连接组件,如变音符号。我们在图像上应用距离变换来创建图像骨架。对骨架进行剪枝,检测其顶点和边缘,从而生成初始文档图。我们使用顶点的t-score和l-score来计算顶点的v-score,它们量化了顶点与直线上绝对链接的距离。以贪婪的方式,我们将图中的每条边分类为链接、桥或冲突边。我们先合并每两条被分类为连接的边,然后再合并冲突的边。最后,我们从图中移除桥边,生成图的最终形式。图中的每条边等于一条提取的线。我们在公共和私有部分的DIVA-hisDB数据集上应用了该方法。公共部门参加了最近进行的中世纪手稿挑战布局分析比赛,我们取得了超过绝大多数这些系统的成绩。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Article Segmentation in Digitised Newspapers with a 2D Markov Model ICDAR 2019 Robust Reading Challenge on Reading Chinese Text on Signboard TableNet: Deep Learning Model for End-to-end Table Detection and Tabular Data Extraction from Scanned Document Images DICE: Deep Intelligent Contextual Embedding for Twitter Sentiment Analysis Blind Source Separation Based Framework for Multispectral Document Images Binarization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1