D4M 3.0: Extended database and language capabilities

Lauren Milechin, V. Gadepally, S. Samsi, J. Kepner, Alexander Chen, D. Hutchison
{"title":"D4M 3.0: Extended database and language capabilities","authors":"Lauren Milechin, V. Gadepally, S. Samsi, J. Kepner, Alexander Chen, D. Hutchison","doi":"10.1109/HPEC.2017.8091083","DOIUrl":null,"url":null,"abstract":"The D4M tool was developed to address many of today's data needs. This tool is used by hundreds of researchers to perform complex analytics on unstructured data. Over the past few years, the D4M toolbox has evolved to support connectivity with a variety of new database engines, including SciDB. D4M-Graphulo provides the ability to do graph analytics in the Apache Accumulo database. Finally, an implementation using the Julia programming language is also now available. In this article, we describe some of our latest additions to the D4M toolbox and our upcoming D4M 3.0 release. We show through benchmarking and scaling results that we can achieve fast SciDB ingest using the D4M-SciDB connector, that using Graphulo can enable graph algorithms on scales that can be memory limited, and that the Julia implementation of D4M achieves comparable performance or exceeds that of the existing MATLAB® implementation.","PeriodicalId":364903,"journal":{"name":"2017 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC.2017.8091083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The D4M tool was developed to address many of today's data needs. This tool is used by hundreds of researchers to perform complex analytics on unstructured data. Over the past few years, the D4M toolbox has evolved to support connectivity with a variety of new database engines, including SciDB. D4M-Graphulo provides the ability to do graph analytics in the Apache Accumulo database. Finally, an implementation using the Julia programming language is also now available. In this article, we describe some of our latest additions to the D4M toolbox and our upcoming D4M 3.0 release. We show through benchmarking and scaling results that we can achieve fast SciDB ingest using the D4M-SciDB connector, that using Graphulo can enable graph algorithms on scales that can be memory limited, and that the Julia implementation of D4M achieves comparable performance or exceeds that of the existing MATLAB® implementation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
D4M 3.0:扩展数据库和语言功能
开发D4M工具是为了满足当今的许多数据需求。数百名研究人员使用该工具对非结构化数据进行复杂分析。在过去的几年中,D4M工具箱已经发展到支持与各种新数据库引擎(包括SciDB)的连接。D4M-Graphulo提供了在Apache Accumulo数据库中进行图形分析的能力。最后,现在还提供了使用Julia编程语言的实现。在本文中,我们将介绍D4M工具箱的一些最新功能和即将发布的D4M 3.0版本。我们通过基准测试和缩放结果表明,我们可以使用D4M-SciDB连接器实现快速SciDB提取,使用Graphulo可以在内存有限的规模上启用图形算法,并且D4M的Julia实现实现了相当的性能或超过现有的MATLAB®实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimized task graph mapping on a many-core neuromorphic supercomputer Software-defined extreme scale networks for bigdata applications Power-aware computing: Measurement, control, and performance analysis for Intel Xeon Phi xDCI, a data science cyberinfrastructure for interdisciplinary research Leakage energy reduction for hard real-time caches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1