Ultra-reliable real-time control systems-future trends

R. Hammett
{"title":"Ultra-reliable real-time control systems-future trends","authors":"R. Hammett","doi":"10.1109/DASC.1998.741516","DOIUrl":null,"url":null,"abstract":"Today's aircraft use ultra-reliable real-time controls for demanding functions such as Fly-By-Wire (FBW) flight control. Future aircraft, spacecraft and other vehicles will require greater use of these types of controls for functions that currently are allowed to fail, fail to degraded operation, or require human intervention in response to failure. Fully automated and autonomous functions will require ultra-reliable control. But ultra-reliable systems are very expensive to design and require large amounts of onboard equipment. This paper will discuss how the use of low-cost sensors with digital outputs, digitally commanded fault-tolerant actuation devices and interconnecting networks of low-cost data buses offer the promise of more affordable ultra-reliable systems. Specific technologies and concepts to be discussed include low-cost automotive and industrial data buses, \"smart\" actuation devices with integral fault masking capabilities, management of redundant sensors, and the fault detection and diagnosis of the data network. The advantages of integrating the control and distribution of electrical power with the control system will be illustrated. The design, installation, and upgrade flexibility benefits provided by an all-digital and shared network approach are presented. The economic benefits of systems that can operate following failure and without immediate repair will be reviewed. The inherent ability of these redundant systems to provide effective built-in-test and self-diagnostics capabilities will be described. The challenges associated with developing ultra-reliable software for these systems and the difficulties associated with exhaustive verification testing will be presented as will additional development hurdles that must be overcome.","PeriodicalId":335827,"journal":{"name":"17th DASC. AIAA/IEEE/SAE. Digital Avionics Systems Conference. Proceedings (Cat. No.98CH36267)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"17th DASC. AIAA/IEEE/SAE. Digital Avionics Systems Conference. Proceedings (Cat. No.98CH36267)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DASC.1998.741516","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Today's aircraft use ultra-reliable real-time controls for demanding functions such as Fly-By-Wire (FBW) flight control. Future aircraft, spacecraft and other vehicles will require greater use of these types of controls for functions that currently are allowed to fail, fail to degraded operation, or require human intervention in response to failure. Fully automated and autonomous functions will require ultra-reliable control. But ultra-reliable systems are very expensive to design and require large amounts of onboard equipment. This paper will discuss how the use of low-cost sensors with digital outputs, digitally commanded fault-tolerant actuation devices and interconnecting networks of low-cost data buses offer the promise of more affordable ultra-reliable systems. Specific technologies and concepts to be discussed include low-cost automotive and industrial data buses, "smart" actuation devices with integral fault masking capabilities, management of redundant sensors, and the fault detection and diagnosis of the data network. The advantages of integrating the control and distribution of electrical power with the control system will be illustrated. The design, installation, and upgrade flexibility benefits provided by an all-digital and shared network approach are presented. The economic benefits of systems that can operate following failure and without immediate repair will be reviewed. The inherent ability of these redundant systems to provide effective built-in-test and self-diagnostics capabilities will be described. The challenges associated with developing ultra-reliable software for these systems and the difficulties associated with exhaustive verification testing will be presented as will additional development hurdles that must be overcome.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超可靠实时控制系统——未来趋势
今天的飞机使用超可靠的实时控制苛刻的功能,如电传(FBW)飞行控制。未来的飞机、航天器和其他运载工具将需要更多地使用这些类型的控制功能,这些功能目前被允许失效、失效或降级操作,或者需要人为干预以应对故障。全自动和自主功能将需要超可靠的控制。但是超可靠系统的设计成本非常高,并且需要大量的机载设备。本文将讨论如何使用具有数字输出的低成本传感器,数字命令容错驱动装置和低成本数据总线互连网络,以提供更实惠的超可靠系统的承诺。将讨论的具体技术和概念包括低成本的汽车和工业数据总线,具有集成故障屏蔽能力的“智能”驱动装置,冗余传感器的管理以及数据网络的故障检测和诊断。将电力的控制和分配与控制系统集成的优点将被说明。介绍了全数字共享网络的设计、安装和升级灵活性。系统的经济效益,可以在故障后运行,而不需要立即维修将进行审查。将描述这些冗余系统提供有效的内置测试和自诊断功能的固有能力。与为这些系统开发超可靠软件相关的挑战,以及与详尽的验证测试相关的困难,以及必须克服的额外开发障碍,都将呈现出来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The network vehicle-a glimpse into the future of mobile multi-media Fault protection design of the quikscat and seawinds instruments Microfabricated chemical sensors for safety and emission control applications Managing multi-platform sensor systems Air data sensor failure detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1