Implementation of 80MHz NodeMCU Lolin for Realtime Precision Maintenance Scheduler CPS Calculation on a Volvo In-Line D16C610 Engine

A. Kurniawan, Kholilatul Wardani, Eki Ahmad Zaki Hamidi
{"title":"Implementation of 80MHz NodeMCU Lolin for Realtime Precision Maintenance Scheduler CPS Calculation on a Volvo In-Line D16C610 Engine","authors":"A. Kurniawan, Kholilatul Wardani, Eki Ahmad Zaki Hamidi","doi":"10.1109/TSSA56819.2022.10063901","DOIUrl":null,"url":null,"abstract":"The frequent use of the Volvo engine for mechanical hauling necessitates a real-time and intelligent approach to when and how to perform periodic maintenance. The single or double trailer (vessel) that the Volvo FH16 prime mover truck is equipped to pull may weigh between 280 metric tons. Unfortunately, the Service-Meter (SM), which counts engine operating hours without accounting for engine speed, load, or oil temperature, serves as the primary basis for the maintenance schedule. As a result of this faulty parameter, the maintenance schedule became inefficient and flawed. A NodeMCU Module is installed on an ECU to include crankshaft rotation to Hour Meter parameter which used to decide when to carried out the periodic maintenance. The wear components inside the engine that is in contact with rotating or moving parts such as crankshaft, camshaft, piston cylinders specifically the rings, cylinder liner, and connecting rod are all depend on the number of crankshaft rotation. By including the crankshaft RPM when the engine is operating, using SMconv, The most frequent maintenance service (PS250) is carried out approximately every 11 days (previously every 15 days). By making PS250 more frequent which means replacement of engine oil, engine oil filter, and secondary fuel filter (racor filter) will be done more frequently. The result and effect of the maintenance is therefore in accordance with metal wear pace inside the engine. Therefore, by modifying the SM parameter the more frequent maintenance service is expected to make make better MTBF and MTTR thus resulting in longer engine lifetime.","PeriodicalId":164665,"journal":{"name":"2022 16th International Conference on Telecommunication Systems, Services, and Applications (TSSA)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 16th International Conference on Telecommunication Systems, Services, and Applications (TSSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSSA56819.2022.10063901","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The frequent use of the Volvo engine for mechanical hauling necessitates a real-time and intelligent approach to when and how to perform periodic maintenance. The single or double trailer (vessel) that the Volvo FH16 prime mover truck is equipped to pull may weigh between 280 metric tons. Unfortunately, the Service-Meter (SM), which counts engine operating hours without accounting for engine speed, load, or oil temperature, serves as the primary basis for the maintenance schedule. As a result of this faulty parameter, the maintenance schedule became inefficient and flawed. A NodeMCU Module is installed on an ECU to include crankshaft rotation to Hour Meter parameter which used to decide when to carried out the periodic maintenance. The wear components inside the engine that is in contact with rotating or moving parts such as crankshaft, camshaft, piston cylinders specifically the rings, cylinder liner, and connecting rod are all depend on the number of crankshaft rotation. By including the crankshaft RPM when the engine is operating, using SMconv, The most frequent maintenance service (PS250) is carried out approximately every 11 days (previously every 15 days). By making PS250 more frequent which means replacement of engine oil, engine oil filter, and secondary fuel filter (racor filter) will be done more frequently. The result and effect of the maintenance is therefore in accordance with metal wear pace inside the engine. Therefore, by modifying the SM parameter the more frequent maintenance service is expected to make make better MTBF and MTTR thus resulting in longer engine lifetime.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
80MHz NodeMCU llin在沃尔沃D16C610发动机上实时精密维修调度程序CPS计算的实现
沃尔沃发动机经常用于机械运输,因此需要一种实时和智能的方法来确定何时以及如何进行定期维护。沃尔沃FH16原动机卡车所配备的单拖车或双拖车(船)的重量可能在280公吨之间。不幸的是,Service-Meter (SM)作为维护计划的主要依据,计算发动机的工作时间,而不考虑发动机转速、负载或油温。由于这个错误的参数,维护计划变得低效和有缺陷。安装在ECU上的NodeMCU模块包括曲轴旋转和小时表参数,用于决定何时进行定期维护。发动机内部与旋转或运动部件(如曲轴、凸轮轴、活塞缸,特别是环、缸套和连杆)接触的磨损部件都取决于曲轴旋转的次数。通过包括发动机运行时的曲轴转速,使用SMconv,最频繁的维护服务(PS250)大约每11天进行一次(以前每15天)。通过使PS250更频繁,这意味着更换机油,机油滤清器和二次燃油滤清器(racor滤清器)将更频繁。因此,维修的结果和效果与发动机内部金属磨损的速度一致。因此,通过修改SM参数,可以提高发动机的MTBF和MTTR,从而延长发动机的使用寿命。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design of a compact antenna and rectifier for a dual band rectenna operating at 2.4 GHz and 5.8 GHz Road Segmentation with U-Net Architecture Using Jetson AGX Xavier For Autonomous Vehicle Speed Control System of BLDC Motor Based on DSP TMS320F28027F Design and Control of Swerve Drive Mechanism for Autonomous Mobile Robot Application of Certainty Factor Method to Diagnose Venereal Diseases Using Confusion Matrix for Multi-Class Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1