A multi-category decision support framework for the Tennessee Eastman problem

Gareth Lee, Parisa A. Bahri, S. Shastri, Anthony Zaknich
{"title":"A multi-category decision support framework for the Tennessee Eastman problem","authors":"Gareth Lee, Parisa A. Bahri, S. Shastri, Anthony Zaknich","doi":"10.23919/ECC.2007.7068302","DOIUrl":null,"url":null,"abstract":"The paper investigates the feasibility of developing a classification framework, based on support vector machines, with the correct properties to act as a decision support system for an industrial process plant, such as the Tennessee Eastman process. The system would provide support to the technicians who monitor plants by signalling the occurrence of abnormal plant measurements marking the onset of a fault condition. To be practical such a system must meet strict standards, in terms of low detection latency, a very low rate of false positive detection and high classification accuracy. Experiments were conducted on examples generated by a simulation of the Tennessee Eastman process and these were preprocessed and classified using a support vector machine. Experiments also considered the efficacy of preprocessing observations using Fisher Discriminant Analysis and a strategy for combining the decisions from a bank of classifiers to improve accuracy when dealing with multiple fault categories.","PeriodicalId":407048,"journal":{"name":"2007 European Control Conference (ECC)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 European Control Conference (ECC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ECC.2007.7068302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The paper investigates the feasibility of developing a classification framework, based on support vector machines, with the correct properties to act as a decision support system for an industrial process plant, such as the Tennessee Eastman process. The system would provide support to the technicians who monitor plants by signalling the occurrence of abnormal plant measurements marking the onset of a fault condition. To be practical such a system must meet strict standards, in terms of low detection latency, a very low rate of false positive detection and high classification accuracy. Experiments were conducted on examples generated by a simulation of the Tennessee Eastman process and these were preprocessed and classified using a support vector machine. Experiments also considered the efficacy of preprocessing observations using Fisher Discriminant Analysis and a strategy for combining the decisions from a bank of classifiers to improve accuracy when dealing with multiple fault categories.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
田纳西伊士曼问题的多类别决策支持框架
本文研究了开发一个基于支持向量机的分类框架的可行性,该框架具有正确的属性,可以作为工业过程工厂(如田纳西伊士曼过程)的决策支持系统。该系统将向监测工厂的技术人员提供支持,通过向工厂发出异常测量的信号,标志着故障状况的开始。要使该系统具有实用性,必须满足严格的标准,即低检测延迟、极低的误报检测率和高分类准确率。对模拟田纳西伊士曼过程生成的样本进行实验,并使用支持向量机对样本进行预处理和分类。实验还考虑了使用Fisher判别分析和组合一组分类器决策的策略对观察结果进行预处理的有效性,以提高处理多个故障类别时的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Maximum Likelihood estimation of state space models from frequency domain data Output feedback H∞ control of continuous-time infinite Markovian jump linear systems via LMI methods Visual servoing of a parallel robot system Comparison between SOS approach and Slack Variable approach for non-negativity check of polynomial functions: Multiple variable case Integrating Hamiltonian systems defined on the Lie groups SO(4) and SO(1,3)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1