Local episode-based learning of multi-objective behavior coordination for a mobile robot in dynamic environments

Y. Nojima, F. Kojima, N. Kubota
{"title":"Local episode-based learning of multi-objective behavior coordination for a mobile robot in dynamic environments","authors":"Y. Nojima, F. Kojima, N. Kubota","doi":"10.1109/FUZZ.2003.1209380","DOIUrl":null,"url":null,"abstract":"This paper is concerned with a local learning method of a multi-objective behavior coordination for a mobile robot. The multiobjective behavior coordination plays a role in integrating outputs of basic behavioral modules. A behavioral weight is assigned to each behavioral module represented by fuzzy rules, production rules, and so on. By updating these behavioral weights, the mobile robot can take a multi-objective situated action. However, the coordination rule is designed suitably static environments and the mobile robot must learn or update coordination rule in dynamic environments with moving obstacles. Therefore, we propose a local episode-based learning which is a learning method using self-reference of the relationship between previous perception and action in short-term memory.","PeriodicalId":212172,"journal":{"name":"The 12th IEEE International Conference on Fuzzy Systems, 2003. FUZZ '03.","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 12th IEEE International Conference on Fuzzy Systems, 2003. FUZZ '03.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZ.2003.1209380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

This paper is concerned with a local learning method of a multi-objective behavior coordination for a mobile robot. The multiobjective behavior coordination plays a role in integrating outputs of basic behavioral modules. A behavioral weight is assigned to each behavioral module represented by fuzzy rules, production rules, and so on. By updating these behavioral weights, the mobile robot can take a multi-objective situated action. However, the coordination rule is designed suitably static environments and the mobile robot must learn or update coordination rule in dynamic environments with moving obstacles. Therefore, we propose a local episode-based learning which is a learning method using self-reference of the relationship between previous perception and action in short-term memory.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
动态环境下移动机器人多目标行为协调的局部情景学习
研究了移动机器人多目标行为协调的局部学习方法。多目标行为协调的作用是整合基本行为模块的输出。将行为权重分配给由模糊规则、产生规则等表示的每个行为模块。通过更新这些行为权重,移动机器人可以进行多目标定位动作。然而,在静态环境中,协调规则的设计是合理的,而在有移动障碍物的动态环境中,移动机器人必须学习或更新协调规则。因此,我们提出了一种基于局部情节的学习方法,它是一种利用短期记忆中先前感知和行动之间关系的自我参照的学习方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fuzzy flow-shop scheduling models based on credibility measure Morphological perceptrons with dendritic structure A validation procedure for fuzzy multiattribute decision making Context dependent information aggregation Traffic engineering with MPLS using fuzzy logic for application in IP networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1