Comparative analysis of classification algorithms on tactile sensors

Wesley Becari, Luana Ruiz, B. G. P. Evaristo, F. J. Ramirez-Fernandez
{"title":"Comparative analysis of classification algorithms on tactile sensors","authors":"Wesley Becari, Luana Ruiz, B. G. P. Evaristo, F. J. Ramirez-Fernandez","doi":"10.1109/ISCE.2016.7797324","DOIUrl":null,"url":null,"abstract":"A comparative analysis of classification algorithms of iCub platform humanoid hand tactile sensors is presented. The experimental data were analyzed with different learning supervised classification algorithms: Decision Trees Classifiers, k-Nearest Neighbors Classifiers (kNN), and Support Vector Machines (SVM). The best result was obtained with a Gaussian SVM kernel, which allowed 97.4% accuracy using 20% data for holdout validation. The results indicate the potential of categorization and learning of robotic hands for object grasping and manipulation.","PeriodicalId":193736,"journal":{"name":"2016 IEEE International Symposium on Consumer Electronics (ISCE)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Symposium on Consumer Electronics (ISCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCE.2016.7797324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

A comparative analysis of classification algorithms of iCub platform humanoid hand tactile sensors is presented. The experimental data were analyzed with different learning supervised classification algorithms: Decision Trees Classifiers, k-Nearest Neighbors Classifiers (kNN), and Support Vector Machines (SVM). The best result was obtained with a Gaussian SVM kernel, which allowed 97.4% accuracy using 20% data for holdout validation. The results indicate the potential of categorization and learning of robotic hands for object grasping and manipulation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
触觉传感器分类算法的比较分析
对iCub平台类人手触觉传感器的分类算法进行了比较分析。使用决策树分类器、k近邻分类器(kNN)和支持向量机(SVM)等不同的学习监督分类算法对实验数据进行分析。使用高斯支持向量机核获得了最好的结果,使用20%的数据进行holdout验证,准确率达到97.4%。结果表明,机器人手的分类和学习在物体抓取和操作方面具有潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Closed-loop calibration of RGB LED consumer projectors Neural predictive models for Brazilian digital TV system based on the azimuthal orientation Comparative analysis of classification algorithms on tactile sensors Voice quality assessment in mobile devices considering different fading models Impact instrumentation for educational purposes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1