Predicting expected gray level statistics of opened signals

W. Costa, R. Haralick
{"title":"Predicting expected gray level statistics of opened signals","authors":"W. Costa, R. Haralick","doi":"10.1109/CVPR.1992.223136","DOIUrl":null,"url":null,"abstract":"The opening of a model signal with a convex, zero-height structuring element is studied empirically. Experiments are performed in which the input signal model parameters and the opening length are varied over an acceptable range and the corresponding grey level distributions in the opened signal are fit to Pearson distributions. Regressions are then used to relate the Pearson distribution parameters to the input parameters, resulting in equations that may be used to predict the effect of an opening. Characterization experiments show that the maximum absolute errors between actual and predicted cumulative distributions using these regression equations have a mean of 0.036 and a standard deviation of 0.011 (for a range of zero to one); the worst-case maximum absolute error encountered between the cumulative distributions is 0.066.<<ETX>>","PeriodicalId":325476,"journal":{"name":"Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.1992.223136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The opening of a model signal with a convex, zero-height structuring element is studied empirically. Experiments are performed in which the input signal model parameters and the opening length are varied over an acceptable range and the corresponding grey level distributions in the opened signal are fit to Pearson distributions. Regressions are then used to relate the Pearson distribution parameters to the input parameters, resulting in equations that may be used to predict the effect of an opening. Characterization experiments show that the maximum absolute errors between actual and predicted cumulative distributions using these regression equations have a mean of 0.036 and a standard deviation of 0.011 (for a range of zero to one); the worst-case maximum absolute error encountered between the cumulative distributions is 0.066.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
预测打开信号的预期灰度统计
对带有凸的零高度结构单元的模型信号的开度进行了实证研究。实验中,输入信号模型参数和开放长度在一个可接受的范围内变化,开放信号中相应的灰度分布符合Pearson分布。然后使用回归来将皮尔逊分布参数与输入参数联系起来,从而产生可用于预测打开效果的方程。表征实验表明,使用这些回归方程的实际累积分布与预测累积分布之间的最大绝对误差均值为0.036,标准差为0.011(范围为0到1);在累积分布之间遇到的最坏情况最大绝对误差为0.066。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Motion trajectories An heterogeneous M-SIMD architecture for Kalman filter controlled processing of image sequences Recognizing 3D objects from 2D images: an error analysis On the derivation of geometric constraints in stereo Computing stereo correspondences in the presence of narrow occluding objects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1