{"title":"Anomaly Detection in Cyber-Physical Systems based on BiGRU-VAE","authors":"R. Alguliyev, L. Sukhostat, Aykhan Mammadov","doi":"10.1109/AICT55583.2022.10013581","DOIUrl":null,"url":null,"abstract":"Various problems inevitably arise in cyber-physical systems, such as equipment failure, performance degradation, etc. Untimely detection of an abnormal state caused by a cyber-attack or a failure to operate devices in a cyber-physical system can lead to severe losses for the entire system. This paper proposes a method based on a deep bidirectional gated recurrent unit and variational autoencoder model to detect anomalies in a cyber-physical system. Experiments on a real dataset have shown the effectiveness of the proposed method in detecting anomalies in a cyber-physical system. Comparison with known methods showed the most accurate results according to the precision, recall, and F-measure metrics and amounted to 99.87%, 77.39%, and 87.20%, respectively.","PeriodicalId":441475,"journal":{"name":"2022 IEEE 16th International Conference on Application of Information and Communication Technologies (AICT)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 16th International Conference on Application of Information and Communication Technologies (AICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICT55583.2022.10013581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Various problems inevitably arise in cyber-physical systems, such as equipment failure, performance degradation, etc. Untimely detection of an abnormal state caused by a cyber-attack or a failure to operate devices in a cyber-physical system can lead to severe losses for the entire system. This paper proposes a method based on a deep bidirectional gated recurrent unit and variational autoencoder model to detect anomalies in a cyber-physical system. Experiments on a real dataset have shown the effectiveness of the proposed method in detecting anomalies in a cyber-physical system. Comparison with known methods showed the most accurate results according to the precision, recall, and F-measure metrics and amounted to 99.87%, 77.39%, and 87.20%, respectively.