Data association for topic intensity tracking

Andreas Krause, J. Leskovec, Carlos Guestrin
{"title":"Data association for topic intensity tracking","authors":"Andreas Krause, J. Leskovec, Carlos Guestrin","doi":"10.1145/1143844.1143907","DOIUrl":null,"url":null,"abstract":"We present a unified model of what was traditionally viewed as two separate tasks: data association and intensity tracking of multiple topics over time. In the data association part, the task is to assign a topic (a class) to each data point, and the intensity tracking part models the bursts and changes in intensities of topics over time. Our approach to this problem combines an extension of Factorial Hidden Markov models for topic intensity tracking with exponential order statistics for implicit data association. Experiments on text and email datasets show that the interplay of classification and topic intensity tracking improves the accuracy of both classification and intensity tracking. Even a little noise in topic assignments can mislead the traditional algorithms. However, our approach detects correct topic intensities even with 30% topic noise.","PeriodicalId":124011,"journal":{"name":"Proceedings of the 23rd international conference on Machine learning","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"65","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 23rd international conference on Machine learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1143844.1143907","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 65

Abstract

We present a unified model of what was traditionally viewed as two separate tasks: data association and intensity tracking of multiple topics over time. In the data association part, the task is to assign a topic (a class) to each data point, and the intensity tracking part models the bursts and changes in intensities of topics over time. Our approach to this problem combines an extension of Factorial Hidden Markov models for topic intensity tracking with exponential order statistics for implicit data association. Experiments on text and email datasets show that the interplay of classification and topic intensity tracking improves the accuracy of both classification and intensity tracking. Even a little noise in topic assignments can mislead the traditional algorithms. However, our approach detects correct topic intensities even with 30% topic noise.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
话题强度跟踪的数据关联
我们提出了一个统一的模型,传统上被视为两个独立的任务:数据关联和多主题随时间的强度跟踪。在数据关联部分,任务是为每个数据点分配一个主题(一个类),强度跟踪部分对主题强度随时间的爆发和变化进行建模。我们的方法结合了用于主题强度跟踪的阶乘隐马尔可夫模型的扩展和用于隐式数据关联的指数阶统计。在文本和电子邮件数据集上的实验表明,分类和主题强度跟踪的相互作用提高了分类和主题强度跟踪的准确性。即使是题目分配中的一点点噪音也会误导传统的算法。然而,即使有30%的主题噪声,我们的方法也能检测到正确的主题强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On a theory of learning with similarity functions Bayesian learning of measurement and structural models Predictive search distributions Data association for topic intensity tracking Feature value acquisition in testing: a sequential batch test algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1