A Method for Speech Dereverberation Based on an Image Deblurring Algorithm Using the Prior of Speech Magnitude Gradient Distribution in the Time-Frequency Domain

W. Jo, Ji-Won Cho, Changsoo Je, Hyung-Min Park
{"title":"A Method for Speech Dereverberation Based on an Image Deblurring Algorithm Using the Prior of Speech Magnitude Gradient Distribution in the Time-Frequency Domain","authors":"W. Jo, Ji-Won Cho, Changsoo Je, Hyung-Min Park","doi":"10.1145/2814940.2814992","DOIUrl":null,"url":null,"abstract":"We propose a speech dereverberation method in the time-frequency domain, based on an image deblurring algorithm. A reverberant speech magnitude can be modeled as a convolution of a clean speech with a reverberation filter in time-frequency domain. Then, dereverberation problem can be regarded as that of image deblurring. Therefore, the proposed method estimates the clean speech magnitude in the time-frequency domain by using the fast image deconvolution method with priors on sparsity of the clean speech magnitude gradient and exponentially decaying property of reverberation filters along the time axis. Then, scaling the reverberation speech magnitude by a mask obtained from the estimated clean one performs dereverberation. Experimental results show that the described method can enhance speech.","PeriodicalId":427567,"journal":{"name":"Proceedings of the 3rd International Conference on Human-Agent Interaction","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd International Conference on Human-Agent Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2814940.2814992","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a speech dereverberation method in the time-frequency domain, based on an image deblurring algorithm. A reverberant speech magnitude can be modeled as a convolution of a clean speech with a reverberation filter in time-frequency domain. Then, dereverberation problem can be regarded as that of image deblurring. Therefore, the proposed method estimates the clean speech magnitude in the time-frequency domain by using the fast image deconvolution method with priors on sparsity of the clean speech magnitude gradient and exponentially decaying property of reverberation filters along the time axis. Then, scaling the reverberation speech magnitude by a mask obtained from the estimated clean one performs dereverberation. Experimental results show that the described method can enhance speech.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于语音幅值梯度分布时频先验的图像去模糊算法的语音去噪方法
我们提出了一种基于图像去模糊算法的时频域语音去噪方法。一个混响的语音幅度可以建模为一个卷积的干净的语音与混响滤波器在时频域。那么,去噪问题可以看作是图像去模糊问题。因此,该方法采用基于干净语音幅度梯度稀疏度和混响滤波器沿时间轴的指数衰减特性的快速图像反卷积方法,在时频域估计干净语音幅度。然后,通过从估计的干净的一个得到的掩模缩放混响语音幅度执行去混响。实验结果表明,该方法能有效增强语音。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enabling Disaster Early Warning via a Configurable Data Collection Framework and Real-time Analytics Personification Aspect of Conversational Agents as Representations of a Physical Object Effects of Behavioral Complexity on Intention Attribution to Robots Spatial Communication and Recognition in Human-agent Interaction using Motion-parallax-based 3DCG Virtual Agent EEG Analysis on 3D Navigation in Virtual Realty with Different Perspectives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1