Named entity recognition and tweet sentiment derived from tweet segmentation using hadoop

S. Powar, S. Shinde
{"title":"Named entity recognition and tweet sentiment derived from tweet segmentation using hadoop","authors":"S. Powar, S. Shinde","doi":"10.1109/ICISIM.2017.8122173","DOIUrl":null,"url":null,"abstract":"Twitter is well known website famous for micro blogging where millions of users exchanging their opinions and thoughts. The tweets users are sharing has a error sum nature. The information available in tweets is insufficient. Because of character limitation tweets are short in nature many applications like Information Retrieval has problems in information retrieval. Here we are proposing a batch processing framework for tweet fragmentation called TweetSeg. TweetSeg combines information from Confined context with information from Universal context for achieving better results for Named Entity identification. Tweeter is used largely so we want to find public sentiment of tweet by segmenting the tweet into fragments where each fragment can be a named entity, we can find meaningful information from the part and analyzing the sentiments expressed in the tweets by using these fragments in Hadoop framework.","PeriodicalId":139000,"journal":{"name":"2017 1st International Conference on Intelligent Systems and Information Management (ICISIM)","volume":"141 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 1st International Conference on Intelligent Systems and Information Management (ICISIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICISIM.2017.8122173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Twitter is well known website famous for micro blogging where millions of users exchanging their opinions and thoughts. The tweets users are sharing has a error sum nature. The information available in tweets is insufficient. Because of character limitation tweets are short in nature many applications like Information Retrieval has problems in information retrieval. Here we are proposing a batch processing framework for tweet fragmentation called TweetSeg. TweetSeg combines information from Confined context with information from Universal context for achieving better results for Named Entity identification. Tweeter is used largely so we want to find public sentiment of tweet by segmenting the tweet into fragments where each fragment can be a named entity, we can find meaningful information from the part and analyzing the sentiments expressed in the tweets by using these fragments in Hadoop framework.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于hadoop的微博分段的命名实体识别和微博情感
推特是一个著名的网站,以微博而闻名,数百万用户在这里交换意见和想法。用户分享的推文具有错误和性质。推文提供的信息是不够的。由于字符的限制,推文本质上是短的,许多应用如信息检索在信息检索方面存在问题。在这里,我们提出了一个名为TweetSeg的tweet碎片批处理框架。TweetSeg将来自受限上下文的信息与来自通用上下文的信息结合起来,以获得更好的命名实体识别结果。Tweeter被大量使用,所以我们想通过将tweet分割成片段来找到tweet的公众情绪,每个片段可以是一个命名的实体,我们可以从部分中找到有意义的信息,并通过在Hadoop框架中使用这些片段来分析tweet中表达的情绪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hybrid technique for splice site prediction Information fusion for images on FPGA: Pixel level with pseudo color Hierarchical document clustering based on cosine similarity measure Embedded home surveillance system with pyroelectric infrared sensor using GSM Healthcare data modeling in R
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1