Geoffroy Couteau, Dahmun Goudarzi, Michael Klooß, Michael Reichle
{"title":"Sharp","authors":"Geoffroy Couteau, Dahmun Goudarzi, Michael Klooß, Michael Reichle","doi":"10.1145/3548606.3560628","DOIUrl":null,"url":null,"abstract":"We provide optimized range proofs, called Sharp, in discrete logarithm and hidden order groups, based on square decomposition. In the former setting, we build on the paradigm of Couteau et al. (Eurocrypt '21) and optimize their range proof (from now on, CKLR) in several ways: (1) We introduce batching via vector commitments and an adapted ∑;-protocol. (2) We introduce a new group switching strategy to reduce communication. (3) As repetitions are necessary to instantiate CKLR in standard groups, we provide a novel batch shortness test that allows for cheaper repetitions. The analysis of our test is nontrivial and forms a core technical contribution of our work. For example, for λ = 128 bit security and B = 64 bit ranges for N = 1 (resp. N = 8) proof(s), we reduce the proof size by 34% (resp. 75%) in arbitrary groups, and by 66% (resp. 88%) in groups of order 256-bit, compared to CKLR. As Sharp and CKLR proofs satisfy a \"relaxed\" notion of security, we show how to enhance their security with one additional hidden order group element. In RSA groups, this reduces the size of state of the art range proofs (Couteau et al., Eurocrypt '17) by 77% (λ = 128, B = 64, N = 1). Finally, we implement our most optimized range proof. Compared to the state of the art Bulletproofs (Bünz et al., S&P 2018), our benchmarks show a very significant runtime improvement. Eventually, we sketch some applications of our new range proofs.","PeriodicalId":435197,"journal":{"name":"Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3548606.3560628","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
We provide optimized range proofs, called Sharp, in discrete logarithm and hidden order groups, based on square decomposition. In the former setting, we build on the paradigm of Couteau et al. (Eurocrypt '21) and optimize their range proof (from now on, CKLR) in several ways: (1) We introduce batching via vector commitments and an adapted ∑;-protocol. (2) We introduce a new group switching strategy to reduce communication. (3) As repetitions are necessary to instantiate CKLR in standard groups, we provide a novel batch shortness test that allows for cheaper repetitions. The analysis of our test is nontrivial and forms a core technical contribution of our work. For example, for λ = 128 bit security and B = 64 bit ranges for N = 1 (resp. N = 8) proof(s), we reduce the proof size by 34% (resp. 75%) in arbitrary groups, and by 66% (resp. 88%) in groups of order 256-bit, compared to CKLR. As Sharp and CKLR proofs satisfy a "relaxed" notion of security, we show how to enhance their security with one additional hidden order group element. In RSA groups, this reduces the size of state of the art range proofs (Couteau et al., Eurocrypt '17) by 77% (λ = 128, B = 64, N = 1). Finally, we implement our most optimized range proof. Compared to the state of the art Bulletproofs (Bünz et al., S&P 2018), our benchmarks show a very significant runtime improvement. Eventually, we sketch some applications of our new range proofs.