Characterizing AI Model Inference Applications Running in the SGX Environment

Shixiong Jing, Qinkun Bao, Pei Wang, Xulong Tang, Dinghao Wu
{"title":"Characterizing AI Model Inference Applications Running in the SGX Environment","authors":"Shixiong Jing, Qinkun Bao, Pei Wang, Xulong Tang, Dinghao Wu","doi":"10.1109/nas51552.2021.9605445","DOIUrl":null,"url":null,"abstract":"Intel Software Guard Extensions (SGX) is a set of extensions built into Intel CPUs for the trusted computation. It creates a hardware-assisted secure container, within which programs are protected from data leakage and data manipulations by privileged software and hypervisors. With the trend that more and more machine learning based programs are moving to cloud computing, SGX can be used in cloud-based Machine Learning applications to protect user data from malicious privileged programs.However, applications running in SGX suffer from several overheads, including frequent context switching, memory page encryption/decryption, and memory page swapping, which significantly degrade the execution efficiency. In this paper, we aim to i) comprehensively explore the execution of general AI applications running on SGX, ii) systematically characterize the data reuses at both page granularity and cacheline granularity, and iii) provide optimization insights for efficient deployment of machine learning based applications on SGX. To the best of our knowledge, our work is the first to study machine learning applications on SGX and explore the potential of data reuses to reduce the runtime overheads in SGX.","PeriodicalId":135930,"journal":{"name":"2021 IEEE International Conference on Networking, Architecture and Storage (NAS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Networking, Architecture and Storage (NAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/nas51552.2021.9605445","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Intel Software Guard Extensions (SGX) is a set of extensions built into Intel CPUs for the trusted computation. It creates a hardware-assisted secure container, within which programs are protected from data leakage and data manipulations by privileged software and hypervisors. With the trend that more and more machine learning based programs are moving to cloud computing, SGX can be used in cloud-based Machine Learning applications to protect user data from malicious privileged programs.However, applications running in SGX suffer from several overheads, including frequent context switching, memory page encryption/decryption, and memory page swapping, which significantly degrade the execution efficiency. In this paper, we aim to i) comprehensively explore the execution of general AI applications running on SGX, ii) systematically characterize the data reuses at both page granularity and cacheline granularity, and iii) provide optimization insights for efficient deployment of machine learning based applications on SGX. To the best of our knowledge, our work is the first to study machine learning applications on SGX and explore the potential of data reuses to reduce the runtime overheads in SGX.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
描述在SGX环境中运行的AI模型推理应用程序
Intel Software Guard Extensions (SGX)是一组内置于Intel cpu中的扩展,用于可信计算。它创建了一个硬件辅助的安全容器,在其中保护程序免受数据泄漏和特权软件和管理程序的数据操作。随着越来越多的基于机器学习的程序转向云计算的趋势,SGX可以用于基于云的机器学习应用程序,以保护用户数据免受恶意特权程序的侵害。但是,在SGX中运行的应用程序有一些开销,包括频繁的上下文切换、内存页加密/解密和内存页交换,这些开销会显著降低执行效率。在本文中,我们的目标是i)全面探索在SGX上运行的通用AI应用程序的执行,ii)系统地描述页面粒度和缓存粒度的数据重用,以及iii)为在SGX上有效部署基于机器学习的应用程序提供优化见解。据我们所知,我们的工作是第一个研究SGX上的机器学习应用程序,并探索数据重用的潜力,以减少SGX的运行时开销。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
NVSwap: Latency-Aware Paging using Non-Volatile Main Memory Deflection-Aware Routing Algorithm in Network on Chip against Soft Errors and Crosstalk Faults PLMC: A Predictable Tail Latency Mode Coordinator for Shared NVMe SSD with Multiple Hosts Efficient NVM Crash Consistency by Mitigating Resource Contention Characterizing AI Model Inference Applications Running in the SGX Environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1