Probability-based Imputation Method for Fuzzy Cluster Analysis of Gene Expression Microarray Data

Thanh Le, T. Altman, K. Gardiner
{"title":"Probability-based Imputation Method for Fuzzy Cluster Analysis of Gene Expression Microarray Data","authors":"Thanh Le, T. Altman, K. Gardiner","doi":"10.1109/ITNG.2012.159","DOIUrl":null,"url":null,"abstract":"Fuzzy clustering has been widely used for analysis of gene expression micro array data. However, most fuzzy clustering algorithms require complete datasets and, because of technical limitations, most micro array datasets have missing values. To address this problem, we present a new algorithm where genes are clustered using the Fuzzy C-Means algorithm, followed by approximating the fuzzy partition by a probabilistic data distribution model which is then used to estimate the missing values in the dataset. Using distribution-based approach, our method is most appropriate for datasets where the data are nonuniform. We show that our method outperforms six popular imputation algorithms on uniform and nonuniform artificial datasets as well as real datasets with unknown data distribution model.","PeriodicalId":117236,"journal":{"name":"2012 Ninth International Conference on Information Technology - New Generations","volume":"75 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Ninth International Conference on Information Technology - New Generations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITNG.2012.159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Fuzzy clustering has been widely used for analysis of gene expression micro array data. However, most fuzzy clustering algorithms require complete datasets and, because of technical limitations, most micro array datasets have missing values. To address this problem, we present a new algorithm where genes are clustered using the Fuzzy C-Means algorithm, followed by approximating the fuzzy partition by a probabilistic data distribution model which is then used to estimate the missing values in the dataset. Using distribution-based approach, our method is most appropriate for datasets where the data are nonuniform. We show that our method outperforms six popular imputation algorithms on uniform and nonuniform artificial datasets as well as real datasets with unknown data distribution model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基因表达微阵列数据模糊聚类分析的概率归算方法
模糊聚类已广泛应用于基因表达微阵列数据分析。然而,大多数模糊聚类算法需要完整的数据集,并且由于技术限制,大多数微阵列数据集存在缺失值。为了解决这个问题,我们提出了一种新的算法,其中使用模糊c均值算法对基因进行聚类,然后通过概率数据分布模型近似模糊划分,然后使用该模型来估计数据集中的缺失值。使用基于分布的方法,我们的方法最适合于数据不均匀的数据集。结果表明,该方法在均匀和非均匀人工数据集以及具有未知数据分布模型的真实数据集上都优于六种常用的插值算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Brain Imaging for Diagnosis of Schizophrenia: Challenges, Successes and a Research Road Map User-centric Trust-based Recommendation Do Videowikis on the Web Support Better (Constructivist) Learning in the Basics of Information Systems Science? An MDA-Based Approach for WS Composition Using UML Scenarios A Mobile Data Analysis Framework for Environmental Health Decision Support
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1