Toward understanding land use land cover changes and their effects on land surface temperature in yam production area, Côte d'Ivoire, Gontougo Region, using remote sensing and machine learning tools (Google Earth Engine)

K. S. R. Aka, S. Akpavi, N. H. Dibi, Amos T. Kabo-bah, A. Gyilbag, E. Boamah
{"title":"Toward understanding land use land cover changes and their effects on land surface temperature in yam production area, Côte d'Ivoire, Gontougo Region, using remote sensing and machine learning tools (Google Earth Engine)","authors":"K. S. R. Aka, S. Akpavi, N. H. Dibi, Amos T. Kabo-bah, A. Gyilbag, E. Boamah","doi":"10.3389/frsen.2023.1221757","DOIUrl":null,"url":null,"abstract":"Land use and land cover (LULC) changes are one of the main factors contributing to ecosystem degradation and global climate change. This study used the Gontougo Region as a study area, which is fast changing in land occupation and most vulnerable to climate change. The machine learning (ML) method through Google Earth Engine (GEE) is a widely used technique for the spatiotemporal evaluation of LULC changes and their effects on land surface temperature (LST). Using Landsat 8 OLI and TIRS images from 2015 to 2022, we analyzed vegetation cover using the Normalized Difference Vegetation Index (NDVI) and computed LST. Their correlation was significant, and the Pearson correlation (r) was negative for each correlation over the year. The correspondence of the NDVI and LST reclassifications has also shown that non-vegetation land corresponds to very high temperatures (34.33°C–45.22°C in 2015 and 34.26°C–45.81°C in 2022) and that high vegetation land corresponds to low temperatures (17.33°C–28.77°C in 2015 and 16.53 29.11°C in 2022). Moreover, using a random forest algorithm (RFA) and Sentinel-2 images for 2015 and 2022, we obtained six LULC classes: bareland and settlement, forest, waterbody, savannah, annual crops, and perennial crops. The overall accuracy (OA) of each LULC map was 93.77% and 96.01%, respectively. Similarly, the kappa was 0.87 in 2015 and 0.92 in 2022. The LULC classes forest and annual crops lost 48.13% and 65.14%, respectively, of their areas for the benefit of perennial crops from 2015 to 2022. The correlation between LULC and LST showed that the forest class registered the low mean temperature (28.69°C in 2015 and 28.46°C in 2022), and the bareland/settlement registered the highest mean temperature (35.18°C in 2015 and 35.41°C in 2022). The results show that high-resolution images can be used for monitoring biophysical parameters in vegetation and surface temperature and showed benefits for evaluating food security.","PeriodicalId":198378,"journal":{"name":"Frontiers in Remote Sensing","volume":"212 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frsen.2023.1221757","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Land use and land cover (LULC) changes are one of the main factors contributing to ecosystem degradation and global climate change. This study used the Gontougo Region as a study area, which is fast changing in land occupation and most vulnerable to climate change. The machine learning (ML) method through Google Earth Engine (GEE) is a widely used technique for the spatiotemporal evaluation of LULC changes and their effects on land surface temperature (LST). Using Landsat 8 OLI and TIRS images from 2015 to 2022, we analyzed vegetation cover using the Normalized Difference Vegetation Index (NDVI) and computed LST. Their correlation was significant, and the Pearson correlation (r) was negative for each correlation over the year. The correspondence of the NDVI and LST reclassifications has also shown that non-vegetation land corresponds to very high temperatures (34.33°C–45.22°C in 2015 and 34.26°C–45.81°C in 2022) and that high vegetation land corresponds to low temperatures (17.33°C–28.77°C in 2015 and 16.53 29.11°C in 2022). Moreover, using a random forest algorithm (RFA) and Sentinel-2 images for 2015 and 2022, we obtained six LULC classes: bareland and settlement, forest, waterbody, savannah, annual crops, and perennial crops. The overall accuracy (OA) of each LULC map was 93.77% and 96.01%, respectively. Similarly, the kappa was 0.87 in 2015 and 0.92 in 2022. The LULC classes forest and annual crops lost 48.13% and 65.14%, respectively, of their areas for the benefit of perennial crops from 2015 to 2022. The correlation between LULC and LST showed that the forest class registered the low mean temperature (28.69°C in 2015 and 28.46°C in 2022), and the bareland/settlement registered the highest mean temperature (35.18°C in 2015 and 35.41°C in 2022). The results show that high-resolution images can be used for monitoring biophysical parameters in vegetation and surface temperature and showed benefits for evaluating food security.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于遥感和机器学习工具(Google Earth Engine)的科特迪瓦贡图戈地区薯蓣主产区土地利用、土地覆被变化及其对地表温度的影响
土地利用和土地覆盖变化是导致生态系统退化和全球气候变化的主要因素之一。本研究以土地占用变化快、气候变化最脆弱的贡土沟地区为研究区。基于谷歌地球引擎(Google Earth Engine, GEE)的机器学习(ML)方法是一种广泛应用于地表温度变化及其对地表温度影响的时空评估技术。利用2015 - 2022年的Landsat 8 OLI和TIRS影像,利用归一化植被指数(NDVI)和地表温度(LST)对植被覆盖度进行分析。他们的相关性是显著的,Pearson相关(r)为负。NDVI和LST重分类的对应关系也表明,非植被地对应的温度非常高(2015年为34.33°C - 45.22°C, 2022年为34.26°C - 45.81°C),高植被地对应的温度较低(2015年为17.33°C - 28.77°C, 2022年为16.53°C)。此外,利用随机森林算法(RFA)和2015年和2022年的Sentinel-2图像,我们获得了6个LULC类别:裸地和聚落、森林、水体、稀树草原、一年生作物和多年生作物。每张LULC地图的总体精度(OA)分别为93.77%和96.01%。同样,2015年kappa为0.87,2022年为0.92。从2015年到2022年,由于多年生作物的收益,LULC类森林和一年生作物分别损失了48.13%和65.14%的面积。LULC与地表温度的相关性表明,森林类平均温度最低(2015年28.69°C, 2022年28.46°C),裸地/聚落类平均温度最高(2015年35.18°C, 2022年35.41°C)。结果表明,高分辨率影像可用于植被和地表温度等生物物理参数的监测,对粮食安全评价具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A near-real-time tropical deforestation monitoring algorithm based on the CuSum change detection method Suitability of different in-water algorithms for eutrophic and absorbing waters applied to Sentinel-2 MSI and Sentinel-3 OLCI data Sea surface barometry with an O2 differential absorption radar: retrieval algorithm development and simulation Assessment of advanced neural networks for the dual estimation of water quality indicators and their uncertainties Selecting HyperNav deployment sites for calibrating and validating PACE ocean color observations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1