Intel OpenVINO Toolkit for Computer Vision: Object Detection and Semantic Segmentation

V. V. Zunin
{"title":"Intel OpenVINO Toolkit for Computer Vision: Object Detection and Semantic Segmentation","authors":"V. V. Zunin","doi":"10.1109/RusAutoCon52004.2021.9537452","DOIUrl":null,"url":null,"abstract":"The paper provides an overview of the neural networks implementation current state, their methods of execution, and the Intel® OpenVINO ™ Toolkit for executing neural networks on various hardware platforms from Intel. This work describes the selection of computer vision neural networks and datasets for object detection and semantic segmentation of images for subsequent testing. It gives the description of the experiment on various hardware platforms. Moreover, it provides an analysis of the performance and cost of running selected neural networks using the OpenVINO ™ Toolkit in normal mode, as well as using plug-ins for multiple devices and heterogeneous plug-ins on multiple connected devices.","PeriodicalId":106150,"journal":{"name":"2021 International Russian Automation Conference (RusAutoCon)","volume":"175 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Russian Automation Conference (RusAutoCon)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RusAutoCon52004.2021.9537452","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The paper provides an overview of the neural networks implementation current state, their methods of execution, and the Intel® OpenVINO ™ Toolkit for executing neural networks on various hardware platforms from Intel. This work describes the selection of computer vision neural networks and datasets for object detection and semantic segmentation of images for subsequent testing. It gives the description of the experiment on various hardware platforms. Moreover, it provides an analysis of the performance and cost of running selected neural networks using the OpenVINO ™ Toolkit in normal mode, as well as using plug-ins for multiple devices and heterogeneous plug-ins on multiple connected devices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Intel OpenVINO计算机视觉工具包:对象检测和语义分割
本文概述了神经网络实现的现状,它们的执行方法,以及用于在英特尔各种硬件平台上执行神经网络的英特尔®OpenVINO™工具包。这项工作描述了计算机视觉神经网络和数据集的选择,用于后续测试的目标检测和图像的语义分割。给出了在各种硬件平台上的实验描述。此外,本文还分析了在正常模式下使用OpenVINO™Toolkit运行所选神经网络的性能和成本,以及在多个设备上使用插件和在多个连接设备上使用异构插件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Improved Algorithm for Arc Furnace Mode Control with Dynamic Arc Length Correction at Metal Refining Period Part Position Correction During Assembly According to Force and Torque Sensor Signals Formation of a Digital Footprint Based on the Characteristics of Computer Hardware to Identity APCS Users Static Devices to Prevent Unnecessary Disconnections of Gas-Piston Units in Transients Model-Based Architecture for Control System Design with Application of SIMO Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1