Z. Rajab, A. Asheibi, M. Almaktar, A. Khalil, A. Elbreki, F. Mohamed
{"title":"Examination of Low Voltage Grid- Connected PV Generation Under Different Penetration Levels","authors":"Z. Rajab, A. Asheibi, M. Almaktar, A. Khalil, A. Elbreki, F. Mohamed","doi":"10.1109/IREC56325.2022.10002140","DOIUrl":null,"url":null,"abstract":"The existence of abundant and free solar energy has contributed to the rapid development of PV systems, particularly rooftop installations and solar plants construction at transmission and distribution levels. Nevertheless, high penetration level of PV systems at distribution network level could potentially lead to abnormal operation of network. At steady state, the impacts are experienced on voltage (level, profile, stability and drop), line losses, equipment loading, etc. In this paper, a part of Benghazi distribution network is simulated by NEPLAN software. A real data for load and weather were used to simulate the real condition. The paper studies the impacts by comparing the behavior of the distribution grid without PV installations and with PV systems installed with different penetration levels (0%, 50%, 65% and 75%). The results generally showed that the installation of rooftop PV systems caused improvement in voltage profile, decreasing equipment’s (transformers and lines/feeders) loading and line losses. On the other hand, extensive deployment of PV capacity will cause an increase in equipment’s loading. The high penetration of PV systems will also affect the voltage profile, voltage level, and losses. From the results, the allowable penetration percentage (Hosting capacity) for the simulated network must not exceed 65%.","PeriodicalId":115939,"journal":{"name":"2022 13th International Renewable Energy Congress (IREC)","volume":"218 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 13th International Renewable Energy Congress (IREC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IREC56325.2022.10002140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The existence of abundant and free solar energy has contributed to the rapid development of PV systems, particularly rooftop installations and solar plants construction at transmission and distribution levels. Nevertheless, high penetration level of PV systems at distribution network level could potentially lead to abnormal operation of network. At steady state, the impacts are experienced on voltage (level, profile, stability and drop), line losses, equipment loading, etc. In this paper, a part of Benghazi distribution network is simulated by NEPLAN software. A real data for load and weather were used to simulate the real condition. The paper studies the impacts by comparing the behavior of the distribution grid without PV installations and with PV systems installed with different penetration levels (0%, 50%, 65% and 75%). The results generally showed that the installation of rooftop PV systems caused improvement in voltage profile, decreasing equipment’s (transformers and lines/feeders) loading and line losses. On the other hand, extensive deployment of PV capacity will cause an increase in equipment’s loading. The high penetration of PV systems will also affect the voltage profile, voltage level, and losses. From the results, the allowable penetration percentage (Hosting capacity) for the simulated network must not exceed 65%.