A Content-Based Dataset Recommendation System for Biomedical Datasets

Zitong Zhang, Ashraf Yaseen
{"title":"A Content-Based Dataset Recommendation System for Biomedical Datasets","authors":"Zitong Zhang, Ashraf Yaseen","doi":"10.1109/icict58900.2023.00040","DOIUrl":null,"url":null,"abstract":"Nowadays, with the rapid development of cloud data and online collaboration platforms, there is a growing trend among researchers to make their data publicly available for experimental reproducibility and data reusability. On one hand, sharing data with collaborators increases the visibility of the work. On the other hand, the abundance of data on multiple platforms makes it hard for researchers to find data relevant to their own research. To overcome this challenge, a dataset recommendation system capable of finding relevant datasets from multiple resources would be helpful. In the past two decades, few dataset recommendation methods have been implemented, that are mostly domain-specific or simply recommend datasets based on keywords. We believe a general dataset recommender system that recommends datasets with information either extracted from another dataset or supplied by researchers can enhance researchers’ efficiency in searching for relevant data and significantly improve their research efficiency. This work adopts an information retrieval (IR) paradigm for dataset recommendation. By extracting summary information from each dataset and generating a profile for each, we use and compare multiple content-based recommendation methods to recommend the most-relevant datasets in GEO, SRA, and several other repositories. Our results and evaluations prove the usefulness and need for such system.","PeriodicalId":425057,"journal":{"name":"2023 6th International Conference on Information and Computer Technologies (ICICT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 6th International Conference on Information and Computer Technologies (ICICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icict58900.2023.00040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nowadays, with the rapid development of cloud data and online collaboration platforms, there is a growing trend among researchers to make their data publicly available for experimental reproducibility and data reusability. On one hand, sharing data with collaborators increases the visibility of the work. On the other hand, the abundance of data on multiple platforms makes it hard for researchers to find data relevant to their own research. To overcome this challenge, a dataset recommendation system capable of finding relevant datasets from multiple resources would be helpful. In the past two decades, few dataset recommendation methods have been implemented, that are mostly domain-specific or simply recommend datasets based on keywords. We believe a general dataset recommender system that recommends datasets with information either extracted from another dataset or supplied by researchers can enhance researchers’ efficiency in searching for relevant data and significantly improve their research efficiency. This work adopts an information retrieval (IR) paradigm for dataset recommendation. By extracting summary information from each dataset and generating a profile for each, we use and compare multiple content-based recommendation methods to recommend the most-relevant datasets in GEO, SRA, and several other repositories. Our results and evaluations prove the usefulness and need for such system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于内容的生物医学数据集推荐系统
如今,随着云数据和在线协作平台的快速发展,研究人员将其数据公开以实现实验可重复性和数据可重用性的趋势越来越明显。一方面,与合作者共享数据增加了工作的可见性。另一方面,多平台的海量数据使得研究人员很难找到与自己研究相关的数据。为了克服这一挑战,一个能够从多个资源中找到相关数据集的数据集推荐系统将会有所帮助。在过去的二十年里,数据集推荐方法很少实现,大多是特定于领域的或简单地基于关键字推荐数据集。我们认为,一个通用的数据集推荐系统,可以推荐从其他数据集中提取或由研究人员提供的信息的数据集,可以提高研究人员搜索相关数据的效率,显著提高研究效率。本工作采用信息检索(IR)范式进行数据集推荐。通过从每个数据集中提取摘要信息并为每个数据集生成配置文件,我们使用并比较了多种基于内容的推荐方法来推荐GEO, SRA和其他几个存储库中最相关的数据集。我们的结果和评价证明了这种系统的有效性和必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Lung Cancer Classification and Prediction of Disease Severity Score Using Deep Learning Design Methodology for Single-Channel CNN-Based FER Systems Blockchain-based Certificate Management with Multi-Party Authentication A Content-Based Dataset Recommendation System for Biomedical Datasets Rainfall Forecasting with Variational Autoencoders and LSTMs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1