{"title":"Chapter 8. Cucurbit[8]uril-based 2D and 3D Regular Porous Frameworks","authors":"Hui Wang, Dan‐Wei Zhang, Xin Zhao, Zhanting Li","doi":"10.1039/9781788015950-00175","DOIUrl":null,"url":null,"abstract":"For many years, studies on the generation of periodic or regular porosity and their properties and functions have been limited to insoluble solid-state materials. Self-assembly provides a straightforward strategy for the construction of water-soluble porous supramolecular organic frameworks (SOFs) from rationally designed rigid multitopic molecular components and cucurbit[8]uril (CB[8]). The process is driven hydrophobically by CB[8]-encapsulation-enhanced dimerization of the aromatic (CEBA) units that are appended to the multitopic molecules. By using this strategy, a variety of two-dimensional honeycomb-shaped, square, and rhombic SOFs have been constructed, some of which exhibit interesting absorption and sensing functions. From tetraphenylmethane- and [Ru(bipy)3]2+-derived precursors, three-dimensional diamondoid and cubic SOFs can also be generated. The diamondoid frameworks have been revealed to be open carriers for in situ loading and delivery of antitumor drugs, whereas [Ru(bipy)3]2+-cored frameworks are good porous photosensitizing materials for the enrichment of anionic polyoxometalate catalysts for new visible light–initiated reduction of proton to hydrogen gas. The progress well demonstrates the CB[8]-based CEBA strategy in constructing advanced water-soluble functional porous materials from symmetric preorganized aromatic precursors.","PeriodicalId":222435,"journal":{"name":"Cucurbituril-based Functional Materials","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cucurbituril-based Functional Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/9781788015950-00175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
For many years, studies on the generation of periodic or regular porosity and their properties and functions have been limited to insoluble solid-state materials. Self-assembly provides a straightforward strategy for the construction of water-soluble porous supramolecular organic frameworks (SOFs) from rationally designed rigid multitopic molecular components and cucurbit[8]uril (CB[8]). The process is driven hydrophobically by CB[8]-encapsulation-enhanced dimerization of the aromatic (CEBA) units that are appended to the multitopic molecules. By using this strategy, a variety of two-dimensional honeycomb-shaped, square, and rhombic SOFs have been constructed, some of which exhibit interesting absorption and sensing functions. From tetraphenylmethane- and [Ru(bipy)3]2+-derived precursors, three-dimensional diamondoid and cubic SOFs can also be generated. The diamondoid frameworks have been revealed to be open carriers for in situ loading and delivery of antitumor drugs, whereas [Ru(bipy)3]2+-cored frameworks are good porous photosensitizing materials for the enrichment of anionic polyoxometalate catalysts for new visible light–initiated reduction of proton to hydrogen gas. The progress well demonstrates the CB[8]-based CEBA strategy in constructing advanced water-soluble functional porous materials from symmetric preorganized aromatic precursors.