Position Estimation of Pedestrians in Surveillance Video Using Face Detection and Simple Camera Calibration

Toshio Sato, Xin Qi, Keping Yu, Zheng Wen, Yutaka Katsuyama, Takuro Sato
{"title":"Position Estimation of Pedestrians in Surveillance Video Using Face Detection and Simple Camera Calibration","authors":"Toshio Sato, Xin Qi, Keping Yu, Zheng Wen, Yutaka Katsuyama, Takuro Sato","doi":"10.23919/MVA51890.2021.9511348","DOIUrl":null,"url":null,"abstract":"Pedestrian position estimation in videos is an important technique for enhancing surveillance system applications. Although many studies estimate pedestrian positions by using human body detection, its usage is limited when the entire body expands outside of the field of view. Camera calibration is also important for realizing accurate position estimation. Most surveillance cameras are not adjusted, and it is necessary to establish a method for easy camera calibration after installation. In this paper, we propose an estimation method for pedestrian positions using face detection and anthropometric properties such as statistical face lengths. We also investigate a simple method for camera calibration that is suitable for actual uses. We evaluate the position estimation accuracy by using indoor surveillance videos.","PeriodicalId":312481,"journal":{"name":"2021 17th International Conference on Machine Vision and Applications (MVA)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 17th International Conference on Machine Vision and Applications (MVA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/MVA51890.2021.9511348","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Pedestrian position estimation in videos is an important technique for enhancing surveillance system applications. Although many studies estimate pedestrian positions by using human body detection, its usage is limited when the entire body expands outside of the field of view. Camera calibration is also important for realizing accurate position estimation. Most surveillance cameras are not adjusted, and it is necessary to establish a method for easy camera calibration after installation. In this paper, we propose an estimation method for pedestrian positions using face detection and anthropometric properties such as statistical face lengths. We also investigate a simple method for camera calibration that is suitable for actual uses. We evaluate the position estimation accuracy by using indoor surveillance videos.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于人脸检测和简单摄像机标定的监控视频中行人位置估计
视频中行人位置估计是增强监控系统应用的重要技术。尽管许多研究通过人体检测来估计行人的位置,但当整个身体扩展到视野之外时,它的使用受到限制。摄像机标定对于实现准确的位置估计也很重要。大多数监控摄像机都是不调整的,有必要在安装后建立一种便于摄像机校准的方法。在本文中,我们提出了一种利用人脸检测和人体测量特性(如统计面部长度)来估计行人位置的方法。我们还研究了一种适合实际使用的简单摄像机标定方法。我们利用室内监控视频来评估位置估计的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Output augmentation works well without any domain knowledge On the Influence of Viewpoint Change for Metric Learning Shape from shading and polarization constrained by approximate shape Crack Segmentation for Low-Resolution Images using Joint Learning with Super- Resolution Estimating Contribution of Training Datasets using Shapley Values in Data-scale for Visual Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1