An improved approach for skin lesion analysis based on multiscale decomposition

Y. Filali, M. A. Sabri, A. Aarab
{"title":"An improved approach for skin lesion analysis based on multiscale decomposition","authors":"Y. Filali, M. A. Sabri, A. Aarab","doi":"10.1109/EITECH.2017.8255250","DOIUrl":null,"url":null,"abstract":"Skin cancer is one of the most common types of cancer in the white populations and the incidence of skin cancer has reached epidemic proportions. This paper proposes a new approach for automatic segmentation and classification for skin lesion. The segmentation is based on a pre-processing using the color structure texture image decomposition. Geometrical component is used in the lesion segmentation and the texture component is used to extract the lesion texture features. Feature classification is performed using the Support Vector Machine (SVM) classifier. The efficiency and the performance of the proposed approach are evaluated in comparison with recent and robust dermoscopic approaches from literature.","PeriodicalId":447139,"journal":{"name":"2017 International Conference on Electrical and Information Technologies (ICEIT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Electrical and Information Technologies (ICEIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EITECH.2017.8255250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Skin cancer is one of the most common types of cancer in the white populations and the incidence of skin cancer has reached epidemic proportions. This paper proposes a new approach for automatic segmentation and classification for skin lesion. The segmentation is based on a pre-processing using the color structure texture image decomposition. Geometrical component is used in the lesion segmentation and the texture component is used to extract the lesion texture features. Feature classification is performed using the Support Vector Machine (SVM) classifier. The efficiency and the performance of the proposed approach are evaluated in comparison with recent and robust dermoscopic approaches from literature.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多尺度分解的皮肤损伤分析改进方法
皮肤癌是白人人群中最常见的癌症类型之一,皮肤癌的发病率已达到流行病的程度。提出了一种新的皮肤损伤自动分割分类方法。该分割是在预处理的基础上利用图像的颜色结构进行纹理分解。几何分量用于病灶分割,纹理分量用于提取病灶纹理特征。特征分类使用支持向量机(SVM)分类器进行。效率和提出的方法的性能进行了评估,与最近和强大的皮肤镜方法从文献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design of a novel slotted bandpass-bandstop filters using U-resonator and suspended multilayer-technique for L/X-band and Wlan/WiMax applications Analysis and comparaison of control on power converters in photovoltaic energy Artificial bee colony MPPT control of wind generator without speed sensors Constrained model predictive control for dc-dc buck power converters Simulation and experimental validation of VOC and hysteresis control strategies of unit power factor three-phase PWM rectifier
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1