P. Stysley, D. B. Coyle, M. Mullin, J. Rabinowitz, M. Trainer
{"title":"Damage threshold testing of UV optics under a Titan environment for NASA’s Dragonfly mission","authors":"P. Stysley, D. B. Coyle, M. Mullin, J. Rabinowitz, M. Trainer","doi":"10.1117/12.2642897","DOIUrl":null,"url":null,"abstract":"The Dragonfly Mass Spectrometer (DraMS) being developed at NASA’s Goddard Space Flight Center will use a solidstate 266-nm pulsed Nd:YAG laser to perform compositional analysis on the surface of Titan. Due to the high fluence of the focused pulse energy on the laser’s beam steering unit (BSU) and the mass spectrometer window, the damage threshold of these optics in a Titan atmosphere needed to be characterized. This paper details the test setup and the successful demonstration of testing the highest fluence optics for the expected mission duration of 2 million laser pulses in a Titanrelevant atmosphere.","PeriodicalId":202227,"journal":{"name":"Laser Damage","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser Damage","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2642897","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The Dragonfly Mass Spectrometer (DraMS) being developed at NASA’s Goddard Space Flight Center will use a solidstate 266-nm pulsed Nd:YAG laser to perform compositional analysis on the surface of Titan. Due to the high fluence of the focused pulse energy on the laser’s beam steering unit (BSU) and the mass spectrometer window, the damage threshold of these optics in a Titan atmosphere needed to be characterized. This paper details the test setup and the successful demonstration of testing the highest fluence optics for the expected mission duration of 2 million laser pulses in a Titanrelevant atmosphere.