A Cloud-Fog Architecture for Video Analytics on Large Scale Camera Networks Using Semantic Scene Analysis

Kunal Jain, Kishan Sairam Adapa, Kunwar Grover, R. Sarvadevabhatla, Suresh Purini
{"title":"A Cloud-Fog Architecture for Video Analytics on Large Scale Camera Networks Using Semantic Scene Analysis","authors":"Kunal Jain, Kishan Sairam Adapa, Kunwar Grover, R. Sarvadevabhatla, Suresh Purini","doi":"10.1109/CCGrid57682.2023.00054","DOIUrl":null,"url":null,"abstract":"This paper proposes a scalable distributed video analytics framework that can process thousands of video streams from sources such as CCTV cameras using semantic scene analysis. The main idea is to deploy deep learning pipelines on the fog nodes and generate semantic scene description records (SDRs) of video feeds from the associated CCTV cameras. These SDRs are transmitted to the cloud instead of video frames saving on network bandwidth. Using these SDRs stored on the cloud database, we can answer many complex queries and perform rich video analytics, within extremely low latencies. There is no need to scan and process the video streams again on a per query basis. The software architecture on the fog nodes allows for integrating new deep learning pipelines dynamically into the existing system, thereby supporting novel analytics and queries. We demonstrate the effectiveness of the system by proposing a novel distributed algorithm for real-time vehicle pursuit. The proposed algorithm involves asking multiple spatio-temporal queries in an adaptive fashion to reduce the query processing time and is robust to inaccuracies in the deployed deep learning pipelines and camera failures.","PeriodicalId":363806,"journal":{"name":"2023 IEEE/ACM 23rd International Symposium on Cluster, Cloud and Internet Computing (CCGrid)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/ACM 23rd International Symposium on Cluster, Cloud and Internet Computing (CCGrid)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGrid57682.2023.00054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a scalable distributed video analytics framework that can process thousands of video streams from sources such as CCTV cameras using semantic scene analysis. The main idea is to deploy deep learning pipelines on the fog nodes and generate semantic scene description records (SDRs) of video feeds from the associated CCTV cameras. These SDRs are transmitted to the cloud instead of video frames saving on network bandwidth. Using these SDRs stored on the cloud database, we can answer many complex queries and perform rich video analytics, within extremely low latencies. There is no need to scan and process the video streams again on a per query basis. The software architecture on the fog nodes allows for integrating new deep learning pipelines dynamically into the existing system, thereby supporting novel analytics and queries. We demonstrate the effectiveness of the system by proposing a novel distributed algorithm for real-time vehicle pursuit. The proposed algorithm involves asking multiple spatio-temporal queries in an adaptive fashion to reduce the query processing time and is robust to inaccuracies in the deployed deep learning pipelines and camera failures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于语义场景分析的大规模摄像机网络视频分析云雾架构
本文提出了一个可扩展的分布式视频分析框架,该框架可以使用语义场景分析处理来自CCTV摄像机等源的数千个视频流。主要思想是在雾节点上部署深度学习管道,并从相关的闭路电视摄像机生成视频提要的语义场景描述记录(sdr)。这些sdr被传输到云端,而不是视频帧,从而节省了网络带宽。使用存储在云数据库中的这些sdr,我们可以在极低的延迟内回答许多复杂的查询并执行丰富的视频分析。不需要在每个查询的基础上再次扫描和处理视频流。雾节点上的软件架构允许将新的深度学习管道动态集成到现有系统中,从而支持新的分析和查询。我们通过提出一种新的分布式实时车辆追踪算法来验证该系统的有效性。该算法涉及以自适应方式询问多个时空查询,以减少查询处理时间,并且对部署的深度学习管道中的不准确性和相机故障具有鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
HeROfake: Heterogeneous Resources Orchestration in a Serverless Cloud – An Application to Deepfake Detection hsSpMV: A Heterogeneous and SPM-aggregated SpMV for SW26010-Pro many-core processor CacheIn: A Secure Distributed Multi-layer Mobility-Assisted Edge Intelligence based Caching for Internet of Vehicles AggFirstJoin: Optimizing Geo-Distributed Joins using Aggregation-Based Transformations A Cloud-Fog Architecture for Video Analytics on Large Scale Camera Networks Using Semantic Scene Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1