Comparing Different Term Weighting Schemas for Topic Modeling

Ciprian-Octavian Truică, F. Rădulescu, A. Boicea
{"title":"Comparing Different Term Weighting Schemas for Topic Modeling","authors":"Ciprian-Octavian Truică, F. Rădulescu, A. Boicea","doi":"10.1109/SYNASC.2016.055","DOIUrl":null,"url":null,"abstract":"Topic Modeling is a type of statistical model that tries to determine the topics present in a corpus of documents. The accuracy measures applied to clustering algorithm can also be used to assess the accuracy of topic modeling algorithms because determining topics for documents is similar with clustering them. This paper presents an experimental validation regarding the accuracy of Latent Dirichlet Allocation in comparison with Non-Negative Matrix Factorization and K-Means. The experiments use different weighting schemas when constructing the document-term matrix to determine if the accuracy of the algorithm improves. Two well known, already labeled text corpora are used for testing. The Purity and Adjusted Rand Index are used to evaluate the accuracy. Also, a time performance comparison regarding the run-time of these algorithms is presented.","PeriodicalId":268635,"journal":{"name":"2016 18th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 18th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2016.055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Topic Modeling is a type of statistical model that tries to determine the topics present in a corpus of documents. The accuracy measures applied to clustering algorithm can also be used to assess the accuracy of topic modeling algorithms because determining topics for documents is similar with clustering them. This paper presents an experimental validation regarding the accuracy of Latent Dirichlet Allocation in comparison with Non-Negative Matrix Factorization and K-Means. The experiments use different weighting schemas when constructing the document-term matrix to determine if the accuracy of the algorithm improves. Two well known, already labeled text corpora are used for testing. The Purity and Adjusted Rand Index are used to evaluate the accuracy. Also, a time performance comparison regarding the run-time of these algorithms is presented.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
主题建模中不同词权重模式的比较
主题建模是一种统计模型,它试图确定文档语料库中存在的主题。应用于聚类算法的精度度量也可用于评估主题建模算法的准确性,因为确定文档的主题与聚类它们类似。本文通过实验验证了潜狄利克雷分配方法与非负矩阵分解和K-Means方法的准确性。实验采用不同的加权模式来构建文档项矩阵,以确定算法的准确率是否有所提高。两个众所周知的,已经标记的文本语料库用于测试。使用纯度和调整后的兰德指数来评估准确性。同时,对这些算法在运行时的时间性能进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Hybrid CPU/GPU Approach for the Parallel Algebraic Recursive Multilevel Solver pARMS Continuation Semantics of a Language Inspired by Membrane Computing with Symport/Antiport Interactions Parallel Integer Polynomial Multiplication A Numerical Method for Analyzing the Stability of Bi-Parametric Biological Systems Comparing Different Term Weighting Schemas for Topic Modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1