The Extended Kalman Filter and the Particle Filter in the Dynamic State Estimation of Electrical Power Systems

H. Cevallos, Gabriel Intriago, D. Plaza
{"title":"The Extended Kalman Filter and the Particle Filter in the Dynamic State Estimation of Electrical Power Systems","authors":"H. Cevallos, Gabriel Intriago, D. Plaza","doi":"10.1109/ETCM.2018.8580285","DOIUrl":null,"url":null,"abstract":"The state estimation (SE) and the load flow (LF) are critical subjects in the analysis and management of electrical power systems (EPS). This article provides a solution for dynamic state estimation (DSE) in EPS based in the Particle Filter (PF) and the Extended Kalman Filter (EKF) that uses the Holt method to linearize the process model. The performance of the methods was analyzed through the comparison of the results considering the error index (ε). In this work, an IEEE 14 and 30 buses test cases were utilized. The results show that the PF method has better accuracy than the EKF method.","PeriodicalId":334574,"journal":{"name":"2018 IEEE Third Ecuador Technical Chapters Meeting (ETCM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Third Ecuador Technical Chapters Meeting (ETCM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETCM.2018.8580285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The state estimation (SE) and the load flow (LF) are critical subjects in the analysis and management of electrical power systems (EPS). This article provides a solution for dynamic state estimation (DSE) in EPS based in the Particle Filter (PF) and the Extended Kalman Filter (EKF) that uses the Holt method to linearize the process model. The performance of the methods was analyzed through the comparison of the results considering the error index (ε). In this work, an IEEE 14 and 30 buses test cases were utilized. The results show that the PF method has better accuracy than the EKF method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
扩展卡尔曼滤波与粒子滤波在电力系统动态估计中的应用
电力系统的状态估计和潮流分析是电力系统分析和管理中的关键问题。本文提出了一种基于粒子滤波(PF)和扩展卡尔曼滤波(EKF)的EPS动态状态估计(DSE)解决方案,该方案使用Holt方法对过程模型进行线性化。通过考虑误差指数(ε)的结果对比,分析了方法的性能。在这项工作中,使用了IEEE 14和30总线测试用例。结果表明,PF方法比EKF方法具有更好的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Solid Waste Management using Georeferenced Multi-agent Systems* Renewable Energy Source P-V conected to the grid through Shunt Active Power Filter based in P-Q theory Lidar Lite v3 Module Performance Evaluation Analysis of Vehicle Flow Using Auto Vehicle Counting Sign Language Recognition Based on Intelligent Glove Using Machine Learning Techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1