Neural network predictive schemes for building temperature control: a comparative study

L. Ferrarini, S. Rastegarpour
{"title":"Neural network predictive schemes for building temperature control: a comparative study","authors":"L. Ferrarini, S. Rastegarpour","doi":"10.1109/CASE49997.2022.9926557","DOIUrl":null,"url":null,"abstract":"Starting from an application of a real medium-size university building, the present paper focuses on the comparison among different ways to synthesize a predictive control scheme to improve the energy performance for heating, ventilation and air conditioning system of the building. The main motivation is the comparison among a nonlinear predictive control structure previously developed (based on first principle equations) with a predictive control whose prediction model is an artificial neural network. Particular emphasis is given on how to tune the neural network to gain good closed-loop performance. Twenty-one different networks are designed and tuned in order to correlate their closed-loop performance with the type and length of training data set, for building energy efficiency applications. Finally, a linear time-variant predictive control is given, obtained as analytical linearization along the future system trajectory, of the nonlinear equations of the neural network model. The goal is to add to the comparison a low computational burden (linear controller) still derived from nonlinear data-driven methods.","PeriodicalId":325778,"journal":{"name":"2022 IEEE 18th International Conference on Automation Science and Engineering (CASE)","volume":"382 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 18th International Conference on Automation Science and Engineering (CASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CASE49997.2022.9926557","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Starting from an application of a real medium-size university building, the present paper focuses on the comparison among different ways to synthesize a predictive control scheme to improve the energy performance for heating, ventilation and air conditioning system of the building. The main motivation is the comparison among a nonlinear predictive control structure previously developed (based on first principle equations) with a predictive control whose prediction model is an artificial neural network. Particular emphasis is given on how to tune the neural network to gain good closed-loop performance. Twenty-one different networks are designed and tuned in order to correlate their closed-loop performance with the type and length of training data set, for building energy efficiency applications. Finally, a linear time-variant predictive control is given, obtained as analytical linearization along the future system trajectory, of the nonlinear equations of the neural network model. The goal is to add to the comparison a low computational burden (linear controller) still derived from nonlinear data-driven methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
建筑温度控制的神经网络预测方案比较研究
本文从实际中型大学建筑的应用出发,重点比较了综合预测控制方案提高建筑采暖、通风、空调系统能源性能的不同方法。本文的主要动机是将先前开发的非线性预测控制结构(基于第一性原理方程)与预测模型为人工神经网络的预测控制结构进行比较。特别强调了如何调整神经网络以获得良好的闭环性能。21个不同的网络被设计和调整,以便将它们的闭环性能与训练数据集的类型和长度相关联,用于建筑节能应用。最后,对神经网络模型的非线性方程沿未来系统轨迹进行解析线性化,得到线性时变预测控制。我们的目标是在比较中增加一个仍然来自非线性数据驱动方法的低计算负担(线性控制器)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
RailTwin: A Digital Twin Framework For Railway Cross-Domain Fault Diagnosis via Meta-Learning-Based Domain Generalization Automated Sample Pretreatment and Measurement of Benzodiazepines in Serum Using a Biomek i7 Hybrid Workstation and LC-MS/MS Wind energy forecasting using multiple ARIMA models Robust Human Identity Anonymization using Pose Estimation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1