GIS Modeling for Landfill Site Selection via Multi-Criteria Decision Analysis: A Systematic Review

S. Abujayyab, M. Sanusi, A. S. Yahya, Tamer M. Alslaibi
{"title":"GIS Modeling for Landfill Site Selection via Multi-Criteria Decision Analysis: A Systematic Review","authors":"S. Abujayyab, M. Sanusi, A. S. Yahya, Tamer M. Alslaibi","doi":"10.1145/3069593.3069594","DOIUrl":null,"url":null,"abstract":"Utilizing multi-criteria decision analysis as an alternative to traditional screening processes for GIS modeling for landfill site selection (LSS) has attracted significant interest in recent years because of its time and cost savings and its ability to achieve better validation and accuracy. This paper surveys the developments in the modeling of LSS using geographic information systems (GIS) on the basis of multi-criteria decision analysis (MCDA) in the past two decades from 1997 to 2014. Emphasis is placed on the third and fifth stages of the overall applied methodology (selection of weights and decision rules), as well as on the efficiency of the LSS models. From the review, the strengths and limitations of using MCDA for LSS modeling via GIS are identified. Moreover, artificial neural networks instead of MCDA can be used as a new approach in the third and fifth stages of LSS models to enhance validation and accuracy.","PeriodicalId":383937,"journal":{"name":"Proceedings of the International Conference on High Performance Compilation, Computing and Communications","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference on High Performance Compilation, Computing and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3069593.3069594","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Utilizing multi-criteria decision analysis as an alternative to traditional screening processes for GIS modeling for landfill site selection (LSS) has attracted significant interest in recent years because of its time and cost savings and its ability to achieve better validation and accuracy. This paper surveys the developments in the modeling of LSS using geographic information systems (GIS) on the basis of multi-criteria decision analysis (MCDA) in the past two decades from 1997 to 2014. Emphasis is placed on the third and fifth stages of the overall applied methodology (selection of weights and decision rules), as well as on the efficiency of the LSS models. From the review, the strengths and limitations of using MCDA for LSS modeling via GIS are identified. Moreover, artificial neural networks instead of MCDA can be used as a new approach in the third and fifth stages of LSS models to enhance validation and accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多准则决策分析的垃圾填埋场选址GIS建模:系统综述
利用多标准决策分析作为传统筛选过程的替代方案,用于填埋场选址(LSS)的GIS建模,近年来因其节省时间和成本以及能够实现更好的验证和准确性而引起了极大的兴趣。本文综述了1997 - 2014年近20年来基于多准则决策分析(MCDA)的地理信息系统(GIS)在土地安全决策建模方面的研究进展。重点放在整体应用方法的第三和第五阶段(权重和决策规则的选择),以及LSS模型的效率。从综述中,确定了利用MCDA通过GIS进行LSS建模的优势和局限性。此外,人工神经网络可以代替MCDA作为LSS模型第三和第五阶段的新方法,以提高验证性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic Self-assembling Petaflop Scale Clusters Exploiting Multi-Block Atomic Write in SQLite Transaction GIS Modeling for Landfill Site Selection via Multi-Criteria Decision Analysis: A Systematic Review Analysis of Wireless Network Usage at Universiti Utara Malaysia: A Preliminary Study towards Bandwidth Management Preconditioners for Parallel Reservoir Simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1