Experimental verification of acoustic saturation

J.M. Sempsrott, W. O’Brien
{"title":"Experimental verification of acoustic saturation","authors":"J.M. Sempsrott, W. O’Brien","doi":"10.1109/ULTSYM.1999.849232","DOIUrl":null,"url":null,"abstract":"The maximum value of acoustic pressure within an ultrasonic beam is limited by acoustic saturation. The theoretical basis for acoustic saturation has been analyzed previously. In this work, a high-power pulse source is used to drive acoustic pressure levels from an ultrasonic beam to saturation. An automatic procedure determines the field's beam axis using a calibrated Marconi PVDF hydrophone. The hydrophone measured RF waveforms are recorded along the beam axis and analyzed off-line. The peak compressional pressure is evaluated as a function of distance along the beam axis. The overall maximum pressure is compared to theoretical predictions. Three-, six-, and nine-MHz center frequency, 19-mm-diameter transducers were analyzed. The longer focal length transducer saturation level was comparable to a theoretical prediction. However, the theoretical saturation level for the shorter focal length transducers underestimated experimental results.","PeriodicalId":339424,"journal":{"name":"1999 IEEE Ultrasonics Symposium. Proceedings. International Symposium (Cat. No.99CH37027)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1999 IEEE Ultrasonics Symposium. Proceedings. International Symposium (Cat. No.99CH37027)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ULTSYM.1999.849232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

The maximum value of acoustic pressure within an ultrasonic beam is limited by acoustic saturation. The theoretical basis for acoustic saturation has been analyzed previously. In this work, a high-power pulse source is used to drive acoustic pressure levels from an ultrasonic beam to saturation. An automatic procedure determines the field's beam axis using a calibrated Marconi PVDF hydrophone. The hydrophone measured RF waveforms are recorded along the beam axis and analyzed off-line. The peak compressional pressure is evaluated as a function of distance along the beam axis. The overall maximum pressure is compared to theoretical predictions. Three-, six-, and nine-MHz center frequency, 19-mm-diameter transducers were analyzed. The longer focal length transducer saturation level was comparable to a theoretical prediction. However, the theoretical saturation level for the shorter focal length transducers underestimated experimental results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
声饱和度的实验验证
超声波束内声压的最大值受声饱和度的限制。前面已经分析了声饱和的理论基础。在这项工作中,使用高功率脉冲源将超声光束的声压级驱动到饱和状态。使用校准过的马可尼PVDF水听器自动确定场的波束轴。水听器测量的射频波形沿波束轴记录并离线分析。峰值压缩压力被评估为沿梁轴距离的函数。总最大压力与理论预测相比较。分析了3 mhz、6 mhz和9 mhz中心频率、直径19 mm的换能器。较长焦距传感器的饱和水平与理论预测相当。然而,较短焦距换能器的理论饱和水平低估了实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast beam shape computation and wave propagation via the Radon transform Experimental verification of acoustic saturation Ultrasonic characterization of emulsions: milk and water in oil High-contrast RF correlation imaging of defects in food package seals Analysis of resolution for an amplitude steered array
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1