{"title":"Exploiting Non-Negative Matrix Factorization for Binaural Sound Localization in the Presence of Directional Interference","authors":"Ingvi Örnolfsson, T. Dau, Ning Ma, T. May","doi":"10.1109/ICASSP39728.2021.9414233","DOIUrl":null,"url":null,"abstract":"This study presents a novel solution to the problem of binaural localization of a speaker in the presence of interfering directional noise and reverberation. Using a state-of-the-art binaural localization algorithm based on a deep neural network (DNN), we propose adding a source separation stage based on non-negative matrix factorization (NMF) to improve the localization performance in conditions with interfering sources. The separation stage is coupled with the localization stage and is optimized with respect to a broad range of different acoustic conditions, emphasizing a robust and generalizable solution. The machine listening system is shown to greatly benefit from the NMF-based separation stage at low target-to-masker ratios (TMRs) for a variety of noise types, especially for non-stationary noise. It is also demonstrated that training the NMF algorithm on anechoic speech provides better performance than using reverberant speech, and that optimizing the source separation stage using a localization metric rather than a source separation metric substantially increases the system performance.","PeriodicalId":347060,"journal":{"name":"ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP39728.2021.9414233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
This study presents a novel solution to the problem of binaural localization of a speaker in the presence of interfering directional noise and reverberation. Using a state-of-the-art binaural localization algorithm based on a deep neural network (DNN), we propose adding a source separation stage based on non-negative matrix factorization (NMF) to improve the localization performance in conditions with interfering sources. The separation stage is coupled with the localization stage and is optimized with respect to a broad range of different acoustic conditions, emphasizing a robust and generalizable solution. The machine listening system is shown to greatly benefit from the NMF-based separation stage at low target-to-masker ratios (TMRs) for a variety of noise types, especially for non-stationary noise. It is also demonstrated that training the NMF algorithm on anechoic speech provides better performance than using reverberant speech, and that optimizing the source separation stage using a localization metric rather than a source separation metric substantially increases the system performance.