D. Bacciu, Antonio Carta, Daniele Di Sarli, C. Gallicchio, Vincenzo Lomonaco, Salvatore Petroni
{"title":"Towards Functional Safety Compliance of Recurrent Neural Networks","authors":"D. Bacciu, Antonio Carta, Daniele Di Sarli, C. Gallicchio, Vincenzo Lomonaco, Salvatore Petroni","doi":"10.4108/eai.20-11-2021.2314139","DOIUrl":null,"url":null,"abstract":"Deploying Autonomous Driving systems requires facing some novel challenges for the Automotive industry. One of the most critical aspects that can severely compromise their deployment is Functional Safety. The ISO 26262 standard provides guidelines to ensure Functional Safety of road vehicles. However, this standard is not suitable to develop Artificial Intelligence based systems such as systems based on Recurrent Neural Networks (RNNs). To address this issue, in this paper we propose a new methodology, composed of three steps. The first step is the robustness evaluation of the RNN against inputs perturbations. Then, a proper set of safety measures must be defined according to the model’s robustness, where less robust models will require stronger mitigation. Finally, the functionality of the entire system must be extensively tested according to Safety Of The Intended Functionality (SOTIF) guidelines, providing quantitative results about the occurrence of unsafe scenarios, and by evaluating appropriate Safety Performance Indicators.","PeriodicalId":119759,"journal":{"name":"Proceedings of the 1st International Conference on AI for People: Towards Sustainable AI, CAIP 2021, 20-24 November 2021, Bologna, Italy","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st International Conference on AI for People: Towards Sustainable AI, CAIP 2021, 20-24 November 2021, Bologna, Italy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/eai.20-11-2021.2314139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Deploying Autonomous Driving systems requires facing some novel challenges for the Automotive industry. One of the most critical aspects that can severely compromise their deployment is Functional Safety. The ISO 26262 standard provides guidelines to ensure Functional Safety of road vehicles. However, this standard is not suitable to develop Artificial Intelligence based systems such as systems based on Recurrent Neural Networks (RNNs). To address this issue, in this paper we propose a new methodology, composed of three steps. The first step is the robustness evaluation of the RNN against inputs perturbations. Then, a proper set of safety measures must be defined according to the model’s robustness, where less robust models will require stronger mitigation. Finally, the functionality of the entire system must be extensively tested according to Safety Of The Intended Functionality (SOTIF) guidelines, providing quantitative results about the occurrence of unsafe scenarios, and by evaluating appropriate Safety Performance Indicators.