Optimum design of high frequency transformer for compact and light weight switch mode power supplies (SMPS)

H. R. Karampoorian, Papi Gh, A. Vahedi, A. Zadehgol
{"title":"Optimum design of high frequency transformer for compact and light weight switch mode power supplies (SMPS)","authors":"H. R. Karampoorian, Papi Gh, A. Vahedi, A. Zadehgol","doi":"10.1109/IEEEGCC.2006.5686207","DOIUrl":null,"url":null,"abstract":"In this paper a new approach for optimization of high frequency transformer design is presented. The presented design method is based on a restatement of the traditional transformer design equations to include non-sinusoidal switching waveforms and high frequency skin and proximity effects. In this optimization procedure both electric and thermal effects in the transformer is considered. Wave form of voltage and current, and maximum acceptable temperature rise, are used as input data. The aim of this procedure is the selection of the smallest core that can deliver desired power, and determination of optimum flux density and current density to reach a transformer with high power density and admissible temperature rise. Since the transformer is the major contributor to the volume and weight of the Power Supply, the results of this transformer analysis can be used for entire power supply optimization as well. Finally the validity of presented method is analyzed.","PeriodicalId":433452,"journal":{"name":"2006 IEEE GCC Conference (GCC)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE GCC Conference (GCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEEGCC.2006.5686207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In this paper a new approach for optimization of high frequency transformer design is presented. The presented design method is based on a restatement of the traditional transformer design equations to include non-sinusoidal switching waveforms and high frequency skin and proximity effects. In this optimization procedure both electric and thermal effects in the transformer is considered. Wave form of voltage and current, and maximum acceptable temperature rise, are used as input data. The aim of this procedure is the selection of the smallest core that can deliver desired power, and determination of optimum flux density and current density to reach a transformer with high power density and admissible temperature rise. Since the transformer is the major contributor to the volume and weight of the Power Supply, the results of this transformer analysis can be used for entire power supply optimization as well. Finally the validity of presented method is analyzed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
小型轻便开关电源(SMPS)高频变压器的优化设计
本文提出了一种优化高频变压器设计的新方法。本文提出的设计方法是基于对传统变压器设计方程的重述,考虑了非正弦开关波形、高频趋肤效应和邻近效应。在优化过程中,考虑了变压器的电效应和热效应。电压、电流波形和最大可接受温升作为输入数据。此程序的目的是选择能够提供所需功率的最小铁芯,并确定最佳磁通密度和电流密度,以使变压器具有高功率密度和可接受的温升。由于变压器是电源体积和重量的主要贡献者,因此变压器分析的结果也可用于整个电源优化。最后对所提方法的有效性进行了分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Perturbation method based evaluation of power system voltage security Allocating generation to loads and line flows for transmission open access Z-transform PML algorithm for truncating metamaterial FDTD domains A personal search agent system Optimum design of high frequency transformer for compact and light weight switch mode power supplies (SMPS)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1