A new denoising method for DS-UWB signal based on wavelet transform modulus maximum

Y. Peng, C. Bai, Qingyan Zhang
{"title":"A new denoising method for DS-UWB signal based on wavelet transform modulus maximum","authors":"Y. Peng, C. Bai, Qingyan Zhang","doi":"10.1109/ICNIDC.2010.5657856","DOIUrl":null,"url":null,"abstract":"Narrowband pulse can be seen as singularity when it is adopted to transmit Direct Sequence Ultra-Wide Band (DS-UWB) signals. The remarkable property of wavelet transform is that it has ability to characterize the singularities of signals. In the UWB system there are different propagation characteristics for the modulus maxima of signal and noise with the increasing decomposition scales, theoretical and experimental results show that wavelet-transform modulus-maximum method can reserve signal singularity and remove the noise effectively. Therefore, wavelet-transform modulus-maxima method is used to extract useful information from DS-UWB signal in low SNR. A new algorithm is proposed in this paper by combining wavelet-transform modulus maximal denoising method with adaptive threshold algorithm. The simulation results show that the new method is efficient in restraining noise and reconstructing the signal.","PeriodicalId":348778,"journal":{"name":"2010 2nd IEEE InternationalConference on Network Infrastructure and Digital Content","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd IEEE InternationalConference on Network Infrastructure and Digital Content","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNIDC.2010.5657856","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Narrowband pulse can be seen as singularity when it is adopted to transmit Direct Sequence Ultra-Wide Band (DS-UWB) signals. The remarkable property of wavelet transform is that it has ability to characterize the singularities of signals. In the UWB system there are different propagation characteristics for the modulus maxima of signal and noise with the increasing decomposition scales, theoretical and experimental results show that wavelet-transform modulus-maximum method can reserve signal singularity and remove the noise effectively. Therefore, wavelet-transform modulus-maxima method is used to extract useful information from DS-UWB signal in low SNR. A new algorithm is proposed in this paper by combining wavelet-transform modulus maximal denoising method with adaptive threshold algorithm. The simulation results show that the new method is efficient in restraining noise and reconstructing the signal.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于小波变换模极大值的DS-UWB信号去噪方法
窄带脉冲在传输直接序列超宽带(DS-UWB)信号时具有奇异性。小波变换的显著特性是它具有表征信号奇异性的能力。在UWB系统中,随着分解尺度的增大,信号和噪声的模极大值具有不同的传播特性,理论和实验结果表明,小波变换模极大值法能有效地保留信号的奇异性,并能有效地去除噪声。因此,在低信噪比条件下,采用小波变换极大模法从DS-UWB信号中提取有用信息。将小波变换模极大值去噪方法与自适应阈值算法相结合,提出了一种新的去噪算法。仿真结果表明,该方法在抑制噪声和重构信号方面是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Subcarrier and power allocation in cognitive OFDM systems under imperfect CSI with smart channel estimation Spectrum leasing via selective cooperation in distributed cognitive radio networks Secondary user dominated channel reservation in Cognitive Radio Performance bounds for a cognitive radio network with network calculus analysis Countermeasure techniques for SEED hardware modules against differential power analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1