{"title":"Detecting student frustration based on handwriting behavior","authors":"H. Asai, H. Yamana","doi":"10.1145/2508468.2514718","DOIUrl":null,"url":null,"abstract":"Detecting states of frustration among students engaged in learning activities is critical to the success of teaching assistance tools. We examine the relationship between a student's pen activity and his/her state of frustration while solving handwritten problems. Based on a user study involving mathematics problems, we found that our detection method was able to detect student frustration with a precision of 87% and a recall of 90%. We also identified several particularly discriminative features, including writing stroke number, erased stroke number, pen activity time, and air stroke speed.","PeriodicalId":196872,"journal":{"name":"Adjunct Proceedings of the 26th Annual ACM Symposium on User Interface Software and Technology","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adjunct Proceedings of the 26th Annual ACM Symposium on User Interface Software and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2508468.2514718","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
Detecting states of frustration among students engaged in learning activities is critical to the success of teaching assistance tools. We examine the relationship between a student's pen activity and his/her state of frustration while solving handwritten problems. Based on a user study involving mathematics problems, we found that our detection method was able to detect student frustration with a precision of 87% and a recall of 90%. We also identified several particularly discriminative features, including writing stroke number, erased stroke number, pen activity time, and air stroke speed.